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ABSTRACT

COMPUTATION OF THE PRIMARY DECOMPOSITION OF
POLYNOMIAL IDEALS USING GROBNER BASES

Tolgay, Betiil
M.S., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Tolga Karayayla

August 2021, [88| pages

In this thesis, we investigate algorithms for computing primary decompositions of
ideals in polynomial rings. Every ideal in a polynomial ring over a Noetherian com-
mutative ring with identity has a primary decomposition, that is, it can be expressed as
the intersection of primary ideals (in a unique way or not). The existence of primary
decompositions in such polynomial rings is a result of the ascending chain condition
and the existence proof does not suggest any construction method for the primary
components of the ideal. In the first part of the thesis, we investigate the algorithms
developed by Gianni et al. [13] for the computation of a primary decomposition of a
given ideal in a polynomial ring. The main tool used in these algorithms is Grobner
basis techniques for the computation of certain operations on ideals. We give a com-
plete discussion and analysis of the theorems and algorithms developed by Gianni et
al. in [13] here. The second part of the thesis presents another approach to the prob-
lem of computation of primary decomposition developed by Eisenbud et al. in [4].
This method avoids the projection of an ideal to a polynomial subring with one less
variable which was used for reduction in the algorithms developed by Gianni et al.

[13]. We give an outline of the algorithms developed by Eisenbud et al. in [4] here.



The algorithms developed by both Gianni et al. [13] and Eisenbud et al. [4] make
it possible to compute primary components and associated primes of a given ideal,

hence also the radical of the ideal.

Keywords: Primary Decomposition, Polynomial Ideals, Grobner Bases, Algorithms
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0z

POLINOM IDEALLERININ GROBNER BAZLARI KULLANILARAK
PRIMER BILESENLERINE AYRILMASI

Tolgay, Betiil
Yiksek Lisans, Matematik Boliimii

Tez Yoneticisi: Dog. Dr. Tolga Karayayla

Agustos 2021 ,[38|sayfa

Bu tezde, polinom halkalarindaki idealleri primer bilesenlerine ayirma algoritmalarini
inceliyoruz. Birim elemana sahip degismeli Noteryen halka iizerinde tanimli bir po-
linom halkasinin her ideali, primer bilesenlerine ayrilabilir. Bagka bir deyisle, bu tiir
idealler, primer ideallerin kesisimi olarak yazilabilir (bir veya birden fazla sekilde).
Bu tiir polinom halkalarinda primer bilesenlerin varligi, s6z konusu halkadaki yiikse-
len zincir sartinin saglanmasinin bir sonucudur, ancak bu varlik ispati, idealin primer
carpanlarinin nasil insa edilecegine dair bir metot one siirmez. Tezin ilk kisminda,
bir polinom halkasinda verilen bir idealin primer bilesenlerini bulmak i¢in Gianni
ve diger yazarlar [[13]] tarafindan gelistirilen algoritmalar1 inceliyoruz. Bu algoritma-
larda kullanilan esas arag, idealler iizerinde tanimli belirli islemlerin hesaplanmasi
icin kullanilan Grobner bazi teknikleridir. Bu boliimde, Gianni ve diger yazarlar [13]]
tarafindan gelistirilen teorem ve algoritmalarin tam bir analizini ve miitalaasini ya-
pryoruz. Tezin ikinci kisminda ise primer bilesenlerin hesabi problemine Eisenbud
ve diger yazarlar [4] tarafindan gelistirilen bagka bir yaklagim sunuyoruz. Ancak, bu

metot Gianni ve diger yazarlar [13] tarafindan gelistirilen algoritmalarda, indirgeme
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yapmak i¢in kullanilan, polinom idealinin, degiskeni bir eksik olan polinom alt hal-
kasina izdiisiimiinii alma islemini kullanmamaktadir. Bu boliimde, Eisenbud ve diger
yazarlar [4]] tarafindan gelistirilen algoritmalarin bir taslagini sunuyoruz. Hem Gianni
ve diger yazarlar [13] hem de Eisenbud ve diger yazarlar [4] tarafindan gelistirilen
algoritmalar, verilen bir idealin primer ve ortak asal bilesenlerini, boylelikle kokiinii

de hesaplamay1 miimkiin kilmaktadir.

Anahtar Kelimeler: Primer Carpanlar, Polinom Idealleri, Grobner Bazlart, Algoritma-

lar

viii



To My Family

X



ACKNOWLEDGMENTS

First and foremost, I thank Allah for granting me the opportunity to write such a
thesis in mathematics. Secondly, I thank all my family members and relatives for
their mighty support. I would also like to give special thanks to my teachers since
my childhood, mentioning first those who are no longer with us. Perihan Kuzlu,
may she rest in peace, had taught me how to summarize, among several other skills;
Cem Tezer, may he rest in heaven, had tremendous knowledge and an elegant way
of teaching, and besides that, he provided invaluable support for me and my friends
during our difficult times. As for the others, I am very grateful to my supervisor Tolga
Karayayla for accepting me as a master’s student. I thank him for his exceptional help
in providing feedback, his great patience in tutoring, and his mathematical rigour.
I should also thank all my dearest friends for their sincere sharing in my life and
studies, especially my Palestinian friend Rana Assaf Oztiirk from METU, who passed
away years ago. Her education was interrupted because she was practicing her faith.
After hearing that her friend’s doctoral studies had finished, she once said “Something

cracks inside”. I hope she is in a place where there is no longing and no regret.

I apologize for those I failed to mention, and I am sorry for the trees whose lives
ended to become the papers I use excessively (my sister’s idea). My further thanks go
to all the scientists and mathematicians for their tireless efforts to make a significant
contribution. Lastly, I would like to thank all the internet communities like Stack
Exchange, Matematik Kafasi, Wolfram MathWorld, ResearchGate, Wikipedia, Over-
leaf, Grammarly, and Instatext. They helped me a lot in understanding mathematics,

improving my grammar, and writing my thesis in ISTEX.

One day, I hope to see Mathematics Villages in Palestine and every corner of the

world like the ones in Turkey.



TABLE OF CONTENTS

.................................... v
OZ . . . vii
............................. X
TABLE OF CONTENTS X1

CHAPTERS

1 INTRODUCTION]

.1 Primality Test| . . . . ... ... ... ... ... .. 35
42 Zero-dimensionalIdeals| . . ... ... ... ... ... ... .. 38
4.3 Zero-dimensional Primary Decomposition|. . . . . . .. .. ... .. 49

xi



4.4 Primary Decomposition in Polynomial Rings over Principal Ideal [

| Domainsl . . . . . . . e 55

.5 Algorithm for Computing the Associated Primes and Radical of an |
I Ideall . . . . . . . . 66

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In this thesis, we investigate computational methods for obtaining a primary decom-
position of a given ideal in a polynomial ring. Primary ideals are in some sense
generalizations of prime ideals. A primary ideal is defined by the condition that ab is
an element of the ideal implies « is in the ideal or b is in the radical of the ideal. An
ideal is said to have a primary decomposition if it can be expressed as the intersection
of primary ideals. One of the important results about primary decomposition is that
every ideal of a polynomial ring over a Noetherian domain has a primary decompo-
sition. This fact relies on the ascending chain condition on Noetherian rings and its
proof is a pure existence proof which does not indicate any method for construct-
ing the primary components in the primary decomposition. Although the problem
of computing a primary decomposition of an ideal in a polynomial ring is purely a
problem in commutative algebra, it has strong connections with algebraic geometry.
Foranideal I C k[x,...,x,] where k is a field, if / = (), Q); is a primary decompo-
sition (@), are primary ideals), the variety V(1) of the ideal is then equal to | J, V' (Q;).
Here the varieties V (Q;) are irreducible varieties since V(Q;) = V(v/Q;) and v/Q;
is a prime ideal for each ¢ (radicals of primary ideals are prime ideals). This way,
V'(I) is expressed as a union of irreducible varieties. As a result, having a method for
computing a primary decomposition of an ideal gives rise to a method of computing

irreducible components of the variety corresponding to this ideal.



1.2 Contributions and Novelties

In this work, we examine two methods for computing a primary decomposition for
an ideal [ in a polynomial ring. The first method we analyze in depth consists of the
algorithms developed by Gianni, Trager and Zacharias in the paper "Grobner Bases
and Primary Decomposition of Polynomial Ideals" [[13]. These algorithms are based
on Grobner basis techniques for several operations on ideals. The algorithms are re-
cursively iterated by using a reduction step to a case in a polynomial ring with one
less variable. Obtaining the projection of an ideal to a polynomial subring with less
number of variables can be easily performed by elimination theory if Grobner bases
with respect to a lexicographic order is used. These algorithms terminate when the
problem is reduced to the one variable case. In the paper [13] by Gianni et al., the
main result is an algorithm for computing a primary decomposition of a given ideal
in a polynomial ring over a PID which uses Grobner Basis techniques. The algo-
rithm also computes the associated primes of the given ideal. This main algorithm
is built by first developing an algorithm for computing a primary decomposition for
zero-dimensional ideals and then reducing the general case to the zero-dimensional
case within the algorithm. As a biproduct, Gianni et al. provide a test of primality for
a given ideal and an algorithm for computing the radical of the given ideal (indeed,
the radical is the intersection of the associated primes which are given by the main
algorithm). In this thesis, we give a full explanation for the proofs of the theorems
which give rise to the algorithms developed by Gianni et al., and we also analyze
these algorithms step by step emphasizing their connections to the given theorems.
The algorithms usually involve branches and recursive iterations, and in our analysis
of these algorithms we clarify how the algorithm proceeds from one step to the other.
The second method for computing primary decompositions which we explore in this
thesis is developed by Eisenbud, Huneke and Vasconcelos in the paper "Direct Meth-
ods for Primary Decomposition" [4]. This method is different from the method devel-
oped by Gianni et al. in the sense that it avoids the projection operation used by Gianni
et al. to reduce the number of variables. The algorithms developed by Eisenbud et
al. use Ext groups and syzygy computations as tools to compute the equidimensional
hull, the intersection of associated primes of a given dimension, the radical and a pri-

mary decomposition of a given ideal in a polynomial ring over a field. We focus on
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explaining the implications of the theorems proved in [4] in the development of the
given algorithms rather than the proofs of the theorems, and we examine the structure
of the given algorithms and explain how they operate.

The algorithms developed by Gianni et al. in [13]] are implemented as a package in
REDUCE and AXIOM, and the algorithms developed by Eisenbud et al. in [4] are
implemented as a package in Macaulay 2 programs for the computation of primary
decomposition of an ideal. This thesis is an extensive examination of these main

algorithms.

1.3 The Outline of the Thesis

We begin by reviewing the basic properties of primary decomposition in Chapter 2.
We include the proofs of the well-known results about primary decomposition for
completeness. In Chapter 3, we introduce Grobner bases and develop Grobner basis
techniques for performing various operations on ideals. These techniques are the
main computational tools in the algorithms we examine in this thesis. In Chapter 4,
we discuss the theorems and algorithms by Gianni et al. in [13] in full detail. We
begin with a test for checking whether a given ideal is prime or not using Grobner
basis techniques. In §4.2, we investigate properties of zero-dimensional ideals and
the use of Grobner basis in detecting whether a given ideal is zero-dimensional or
not. In §4.3, we analyze the algorithm for computing a primary decomposition of a
zero-dimensional ideal I C R[z1, ..., x,] such that I N R is zero-dimensional for the
ring R. In §4.4, we analyze two generalizations of the algorithm in §4.3 to compute
a primary decomposition of an ideal in a polynomial ring over a PID. The first of
these is for zero-dimensional ideals, and the second one is the general case (for an
arbitrary ideal in such a polynomial ring). Mainly, we present three algorithms for
the computation of primary decomposition. The conditions on the input of these
three algorithms start with the most restrictive ones (zero-dimensional ideal with zero-
dimensional contraction to the coefficient ring) and reach the general case in the third
algorithm (noting that the coefficient ring is a PID in the last two algorithms). And
each of these algorithms uses the previous algorithms in it. Finally, in §4.5 of this

chapter, we discuss how the given algorithms also compute the associated primes of
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the given ideal besides the primary components. In Chapter 5, we give an outline
of the algorithms developed by Eisenbud et al. in [4] together with the analysis of
how these algorithms operate explaining the connections to the theorems proved in
[4]. In §5.2, we present an algorithm for computing the equidimensional hull of
a given ideal. In §5.3, we examine algorithms for computing the equidimensional
radical, the intersection of the associated primes of a given dimension, intersection of
minimal /embedded primes of a given dimension, and as a consequence an algorithm
for computing the radical of an ideal. In §5.4, we explain the procedure for finding
associated primes of a given ideal and once all associated primes are known, a primary

decomposition of the ideal can be computed.



CHAPTER 2

PRIMARY DECOMPOSITION OF IDEALS AND BASIC PROPERTIES

2.1 Introduction

In this chapter, we will discuss the general properties of primary decomposition of
ideals. Mostly, we will benefit from [[10] and occasionally from [5] and [6]. For
completeness, we include basic theorems related to the thesis. Throughout, R will be

a commutative ring with identity.

Definition 2.1.1. An ideal I in a ring R is called primary if [ # R and if ab € 1,
then either a € I or b™ € I for some n > 0. Equivalently, I is primary if and only if
R/I # 0 and every zero divisor in R/ is nilpotent.

We can easily deduce that every prime ideal is primary. Moreover, the contraction of

a primary ideal is primary, too.

Proposition 2.1.2. Let I be a primary ideal in a ring R. Then \/1 is the smallest

prime ideal containing I.

Proof. First, we show that v/T is prime whenever [ is primary. Let ab € v/I. Thus,
(ab)* € I for some k > 0. Since [ is primary, we have a* € I or (b¥)" € I for some
n > 0. Therefore, a € \/T orb e V1. Secondly, \/7 = mch, PmmeP and \/7 is
prime implies v/T is the smallest prime ideal containing I. (I C P and P is prime
implies VIcC P,sincez" e [ C P implies x € P, where n > 0). O

Definition 2.1.3. Let I be a primary ideal of the ring R. If /I = Q, then I is said to
be a Q-primary ideal where () is prime.



Proposition 2.1.4. If /I C R is a maximal ideal, then I is primary. Moreover, the

powers of a maximal ideal M are M -primary.

Proof. Let \/I be a maximal ideal of R. Let zy € I and = ¢ +/I. Since I C /I, we
have zy € /I and x ¢ V1. Since v/T is maximal, v/T and z generate the ring R, i.e.,
(vV/1,z) = (1). Therefore, i + 7 = 1 for some i € /I and r € R. If i* € I, then
(i+7rx)k =i*+r'z = 1¥ = 1 forsome v’ € R. Hence, y(i* +r'x) = yi* +r'zy = v,
this implies y € I. Therefore, [ is primary. (We showed zy € [ and x ¢ /T implies
y € I). For the second part, let M C R be a maximal ideal. Let M* = () for some
s> 0.Ifa € M, then a®* € M* = () which clearly implies a € /Q, i.e., M C \/Q.

Since Q = M* C M, wehave 1 ¢ Q,hence 1 ¢ /Q and \/Q # R. M C \/Q # R
and M is maximal implies M = /@, hence () is primary by the first part of the

proposition. L

Lemma 2.1.5. If the ideals Q; C R are P-primary for 1 < i <n, then Q = (\,_, Q;
is P-primary.

Proof. Clearly, /Q = /(. @i = -, VQi = P. Letab € Q and @ ¢ Q. Then
a ¢ @Q; for some i. Since ab € Q);, and a ¢ @), and Q); is primary, we get b" € Q);.

So,b € v/Q; = P = +/Q. Hence, Q is primary. O

Lemma 2.1.6. Let () be a P-primary ideal, r € R. Then

1. ifr € Q, then (Q :r) = (1),
2. ifr ¢ Q, then (Q : r) is a P-primary ideal, hence \/(Q : r) = P,
3. ifr ¢ P, then (Q :r) = Q.

Proof. (i) and (ii7) are straightforward from definitions. To prove (ii), let a €
V/(@Q :7), hence a* € (Q : r) for some k > 0. Thus, a*r € Q. By assump-
tion, r ¢ (@, hence (a*)" € Q for some n > 0 since () is primary. Therefore,
a € v/Q = P. Conversely, if z € /Q = P, then 2* € Q. Hence, for r ¢ Q,
we have z*r € @ which implies 2* € (Q : r), hence z € +/(Q: 7). This
shows /(@ :r) = P. To show that () : r) is primary, let ab € (Q : r) and
a ¢ /(Q:r) = P. Thus, abr € Q and a ¢ /Q implies a* ¢ Q for all k > 0.
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Hence, br € @ (since () is primary). Hence, b € (Q : r) proving (Q : r) is pri-
mary. ]

Definition 2.1.7. Given an ideal I C R, ifit is possible to express I as an intersection
of primary ideals such that I = ﬂ?;l Qj where QQ; are Pj-primary, then I is said to
have a primary decomposition. If in addition, all P; are distinct and Q; 2 (), £ Qi

for 1 <1 < n, then this decomposition is called irredundant (or minimal).

Note that, not every ideal has such a decomposition. If it does, then it is called a
decomposable ideal. In this thesis, we consider ideals in Noetherian rings, thus they
have a primary decomposition by Theorem 7.13 on pg. 83 of [10]. Furthermore, we
can reduce any decomposition to an irredundant one by using Lemma and by
excluding (); from the decomposition if Q; D [,; Q:-

Theorem 2.1.8. (First uniqueness theorem). Let I be a decomposable ideal, let I =
N, I; be an irredundant primary decomposition of I. Let Q; = \/I; for 1 < i < n.
Then Q; are exactly the prime ideals which appear in the set of ideals /(I : r) for

some r € R, hence are independent of the particular decomposition of 1.

Proof Let a € R, then (I : a) = ((_;L; : a) = (i_;(L; : a). This implies
VI a) = N2 /(i sa) = Nygy, VT by Lemma m We have +/I; prime,
however (), v/I; need not be prime. If it is prime, then by Proposition 1.11 on pg.8
of [10]], we have m = I, = Q, for some 1 < t < n. On the other hand,
since the decomposition is irredundant, for any ¢ we have at least one element ¢; ¢ I;

whereas ¢; € (), I;. Therefore, \/(I : ;) = (N}, \/(; : ¢:) = V/I; by Lemma
2.1.6 O

Together with Lemma|2.1.6] the proof of Theorem indicates that for any 4, there
is an element r; € R such that (I : r;) is Q);-primary. Furthermore, if we regard R/
as an R-module, Theorem amounts to stating that these (); are exactly the prime

ideals which are the radicals of the annihilators of the elements of R/I.

Definition 2.1.9. For a decomposable ideal I C R, if I = (_, I; is an irredundant
primary decomposition and \/T; = Q;, then Q; are called associated primes of I (or

belong to I). The minimal elements of the set {Q1,...,Q} are called the minimal
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(or isolated) prime ideals that are associated with I, the other associated prime ideals

are called the embedded prime ideals.

Remarks: The terms isolated and embedded have origins in geometry. If k is a field
and R = k[xy,...,x,], then the ideal I C R induces a variety V' (I) C k". Moreover,
there is a correspondence between the minimal primes (); of I and the irreducible
components of V' (I). Also, the embedded primes of I correspond to some subvari-
eties of the irreducible components of V'([).

For an irredundant primary decomposition of I = (_, I;, we have

Here, /I; is prime for all i, hence V' (1/I;) is an irreducible variety. Let Q1, ..., Q;,
(t < n) where Q; = +/I; be the minimal primes (isolated primes) of /. For j > t,
we have Q; D @;, for some 4; < ¢ by the minimality of Qy, ..., Q;, hence V(Q;) C
V(Qi,). Therefore, V(I) = UL, V(Q;) = Ui_, V(Q:) where V(Q1),...,V(Q)
are the irreducible components of V' (1). In addition, the primary components /; might
not be independent of the decomposition. However, the primary components whose
radicals are the minimal primes (isolated primes) of / are unique as we will state

below.

Proposition 2.1.10. The ideal I is primary if and only if it has only one associated

prime ideal.

Proof. Consider the primary decomposition / = [, and use the uniqueness of the
list of associated primes. For the converse, if there is a single associated prime, then
there is a primary decomposition with a single primary component, hence the ideal is

primary. 0

Proposition 2.1.11. Let I be a decomposable ideal. Then any prime ideal P D [
contains a minimal prime ideal associated with I, thus the minimal prime ideals of 1

are exactly the minimal elements of the set of all prime ideals containing I.

Proof. Let I = (_, I; be a primary decomposition of I. Hence, if P is a prime

ideal such that P > I = (), I;, then P = /P > N, VT = ()i, Q:. Thus, by
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Proposition 1.11 in [10] on pg.8 (or prime avoidance lemma), we have P D (); for

some j. Therefore, P contains a minimal prime ideal associated with /. [

Proposition 2.1.12. Ler I C R be a decomposable ideal such that (;_, Q; is an
irredundant primary decomposition of 1, let \/(); = P;. Then

UH:{TERl(I:T)#I}.

In particular, if the zero ideal is decomposable, the set D of zero divisors of R is the

union of the prime ideals associated to (0).

Proof. We have I C |J;_, Q; C U;_, P, hence forr € I, (I : ) = R # I. For the
second part, since I is decomposable, (0) is decomposable in R/1, i.e., (0) = (), Qi
where Q; is the image of the ideal @; in R/I under projection. Thus, ; is primary,
too. Hence, it suffices to prove the proposition for / = (0). On the other hand,
D =U, /(0 : ) by Proposition 1.15 of [10], pg.9. Therefore, for r € R\ {0} we
have /(0:7) = N, V(Qi : 1) = Ny¢o, P C P for some j, by Lemma 2.1.6|
Hence, D C |J;_, P,. Moreover, by Theorem every P, is of the form m
for some r € R. Thus, |J_, P, C D. O

As aresult, if (0) is decomposable, we have

D = {zero divisors} = U P,

i=1
where P; are the prime ideals associated with (0).

A = {nilpotent elements} = m P,
i=1

where P; are the minimal primes associated with (0).

We now present some properties of primary decomposition related to localization all

of whose proofs can be found in [10], pp.53 - 54.

Proposition 2.1.13. Let S C R be a multiplicatively closed subset, let () be a P-
primary ideal.



L IFSOP+o, then S~'Q = S~'R.

2. If SN P = &, then S7'Q is S~ P-primary and its contraction in R is Q.

Therefore, the primary ideals correspond to primary ideals in the correspondence

between ideals in S™' R and contracted ideals in R.

Notation: If I C R is any ideal, and S is any multiplicatively closed subset of R, then

the contraction of the ideal S~'I in R is represented as S(I).

Proposition 2.1.14. Let S be a multiplicatively closed subset of R, let I be a decom-
posable ideal. Let I = (;_, Q; be an irredundant primary decomposition of I. Let
VQi = Pi. Suppose the (Q; are numbered such that S has a nonempty intersection
with Py, 11, ..., P, but not with Py, ..., P,,. Then

m

S = ﬁS‘lQi and S(I) = ﬂQZ—

i=1 i=1

where both are irredundant primary decompositions.

Definition 2.1.15. Let ) be a set of prime ideals associated with an ideal I C R. §2

is called isolated in case it satisfies the following. If Pisa prime ideal associated

with I and P C P for some P € S, then Peq.

Lemma 2.1.16. Let €2 be an isolated set of prime ideals associated with I, let S =
R — Upeq P- Then S is multiplicatively closed and for any prime ideal P that is

associated with I, we have
P e QimpliesPNS = o.
Else if P ¢ (), then P¢ Upeq P by Proposition 1.11 (see [10], pg. 8), and thus
PNS+#w.
Together with this lemma and Proposition[2.1.14] we conclude the following theorem.

Theorem 2.1.17. (Second uniqueness theorem). Let I C R be a decomposable ideal,
let I = (\_, Qi be an irredundant primary decomposition of I, let {P;,, ..., P; }
be an isolated set of prime ideals of I. Then, Q;, N --- N Q;, is independent of this

decomposition.
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Corollary 2.1.18. The isolated primary components (the primary components (Q; cor-

responding to minimal prime ideals P;) are uniquely determined by I.

Note that in general the embedded primary components are not uniquely determined

by I.
Next, we investigate the properties of the primary decomposition in Noetherian rings.

Definition 2.1.19. An ideal I C R is called irreducible if I = J N K then either
I =JorlI = K where J, K are ideals of R.

Lemma 2.1.20. If R is a Noetherian ring, then every ideal of R is a finite intersection

of irreducible ideals.

Proof. Assume not. Let X be the set of ideals which are not finite intersection of
irreducible ideals. Hence, X is nonempty. Since R is Noetherian, Y. has a maximal
element, say (). We complete the proof by obtaining a contradiction by showing
Q ¢ X. First, @ is not irreducible, otherwise () is an intersection of one irreducible
ideal (@ = Q). Hence, Q = J N K forideals @ C J, @ C K. By maximality of @,
we get J ¢ X, K ¢ 3. Then J and K are intersections of finitely many irreducible
ideals, and hence so is () = J N K contradicting () € .. O

Lemma 2.1.21. If R is a Noetherian ring, then every irreducible ideal is primary.

Proof. Let I be an irreducible ideal in R. There is no difference between studying
on the actual ring R or the quotient ring R/I. Hence, we can assume / = (0). Let
ab € (0). Thus, ab = 0. Suppose b # 0. To show a™ = 0 for some n > 0,
let (0 : a) = Ann(a) C Ann(a®) C --- C Ann(a®) C --- be a chain of ideals.
Since R is Noetherian, this chain stabilizes after some n > 0. Hence, Ann(a™) =
Ann(a™') = --.. Now, we need to show (a") N (b) = (0). Let za"™ = yb, hence
za™ = yab = 0. Thus, z € Ann(a™*!) = Ann(a™). Therefore, za" = ( which
proves (a™) N (b) = (0). We assumed (0) was irreducible, thus either (a™) = (0) or
(b) = (0). Since b # 0, we get (a™) = (0), therefore a™ = 0 which implies (0) is
primary. 0

Last two lemmas imply the following result.
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Theorem 2.1.22. If R is a Noetherian ring, then every ideal has a primary decompo-

sition.

As a result, the properties we proved above about decomposable ideals are valid for

all ideals in Noetherian rings.

Proposition 2.1.23. Let R be a Noetherian ring. Then every ideal I contains a power

of its radical.

Proof. Let I = (ay,...,a,). Letafi €lforl <i<s. Ifweletq=%7,(ki—1)+
1, then (v/1)? is generated by monomials of the form a}™ - - - a” where ¥3_,m; = q.
Therefore, m; > k; for at least one j which implies that the above monomials are in

I. Hence, (v/I)? C I for some ¢ > 1. O

Corollary 2.1.24. Let R be a Noetherian ring. Then the nilradical (the intersection

of its prime ideals) is nilpotent.

Proof. Let I = (0) in Proposition|2.1.23 O

Corollary 2.1.25. Let R be a Noetherian ring, M be a maximal ideal in R. Let () be

any ideal in R. Then the following are equivalent.

1. Q) is M-primary.

2. V/Q =M.

3. M* C Q C M for some k > 0.
Proof. (i) implies (ii) by definition. (i7) implies (i7i) by Proposition [2.1.23] (i)
implies (i) by taking the radicals of (ii) and having v M* = M = v/ M. O

Proposition 2.1.26. Let I # (1) be an ideal in a Noetherian ring R. Then the prime
ideals associated with I are exactly the prime ideals which appear in the set of ideals

(I : r)for somer € R.

Proof. 1f (I : r) is prime, then it is radical, hence (I : ) = /([ : r). Thus (I : 7)
is an associated prime by Theorem m Conversely, assume that [ = [ Q; where
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(); are P;-primary (an irredundant primary decomposition). Let ; = [, oy Q;. Let
a € I; and let a ¢ I (such an a exists by the irredundancy of the decomposition).
Thus, I C ({ :a) = ()(Q; : a) C (Q; : a) C P, since a ¢ Q; and Q; is P;-
primary . Hence, \/(I : a) = P;. Therefore, P¥ C (I : a) for some k > 1. Let

k be the minimal such number. Thus, P/~* ¢ (I : a). Therefore, aP' ¢ I.
Hence, there exists an element 7 such that r € aPf~' C I, and r ¢ I. This implies

P,C(l:r)=(Q;:r)C P;whichyields P, = (I : ). O
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CHAPTER 3

GROBNER BASES

3.1 Definitions

We set our basic assumptions and notation as follows.
R is a Noetherian commutative ring with identity.

ST R ={r/s|s € S,r € R} is the ring of fractions of R with respect to S where S

is a multiplicatively closed subset of R.
Ry = S7!Ris the localization of R at f where f € Rand S = { f" |n € Z,n > 0}.

Rp = S71R is the localization of R at P where S = R — P and P C R is a prime
ideal of R.

I:J={a€ R|aJ C I} is the ideal quotient of I by .J where I and .J are ideals in
R.

VI ={a € R|a™ € I for some positive integer m} is the radical of the ideal / C R.

When we say that an ideal [ is given, we mean that we are explicitly given a finite set

of generators for this ideal.

For the polynomial ring R[z,...,x,], we can abbreviate the notation as R[x| :=
R[zy,...,x,] and we denote the monomial z7"z5® ... 22" by 2 where o =
(a(l),...,a(n)) € N™ is the multi-degree of the monomial. We will use the terms

multi-degree and degree interchangeably.

Definition 3.1.1. If the following holds, we say that linear equations are solvable in
R.
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e For any givenr, r1,...,ry € R, it is possible to decide if r € (r1,...,1%)R
or not where (11, ...,r;)R is the ideal generated by {r1,...,r} in R and if
r € (ri,...,rc)R, it is possible to find s1,...,s; € R such thatr = > s;r;.

(i.e. ideal membership problem is solvable in R).

e Forany givenry,...,r, € R, it is possible to find a finite set of generators for
the R-module {(sy,...,s;) € R* | Y s;r; = 0}.(i.e. syzygies are computable
over R).

Throughout, we assume that linear equations are solvable in the ring R.

Definition 3.1.2. A fotal order > on N¥ is compatible with the semigroup structure if

the following holds:

o A > 0forall A€ NFwhere( denotes the tuple (0, . ..,0) € N,

e A> Bimplies A+C > B+ Cforall A, B, C € N~

Definition 3.1.3. For a compatible total order > on N* we define the monomial order

> on R[x] = Rlxy,..., 2] by 2® > 2P ifa > B in N*,

We fix a compatible order > on N¥ which induces a monomial order on R[z] =
R[x1, ..., x;]. Such an order is necessarily a well-ordering [[18]], i.e., every nonempty
subset of monomials has a least element. Equivalently, every descending sequence of

monomials stabilizes after finitely many steps.

Definition 3.1.4. We can write any non-zero f € R[x] = R[z1,...,x,] as

where ¢ € R, ¢ # 0, and A > A’ for every nonzero term 'z’ of f. According to this,

we set

It(f) = ca?, the leading term of f.
le(f) = ¢, the leading coefficient of f.
deg(f) = A, the degree (multidegree) of f.
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If G C Rlz] is any subset, then we define Lt(G) = the ideal generated by the set
It(GQ) :={it(g) | g € G}, i.e. the leading term ideal of G.

Moreover, 1t(0) = lc(0) = 0 and deg(0) = —oo by convention.

Definition 3.1.5. f € R[z] is called reducible modulo G C R|x| if f is nonzero and
It(f) € Lt(G). Otherwise, f is called reduced modulo G.

Note that this definition is rather different from the ones about polynomial reducibil-
ity.

Proposition 3.1.6 (Reduction Algorithm). Ler f € R[x] = R[xy,...,2z,| and G =
{91,---,9m} C Rlz]. It is possible to construct " as [ = f' mod(g, ..., gm)R|x]

where [’ is reduced modulo G.

Proof. By Definition 3.1.1} given G = {g1,...,9m} C R|x], we can decide whether

f € R|[z] is reducible modulo G or not as follows.

Let lt(f) = cx® and lt(g;) = c;x*. Without loss of generality, we may assume

a>ao;forl <i¢<rand o < «; forr < i < m for some r.

f is reducible modulo G if and only if there are aq, as, . . ., a, such that
It(f) = cax® Zal Tt (g;) Zal e p®

That is, f is reducible modulo G if and only if lc(f) = ¢ € (¢4, ..., ¢ )R which is
decidable by Definition [3.1.1] (note that by assumption, linear equations are solvable

in R), and we can compute a4, ...,a, if they exist. In this case, we have lt(f) =

2 iz @it (gy).

Suppose f is not reducible, i.e., f is reduced. Then, we can take f’ = f and the

proposition holds in this case.

Suppose f is reducible. Then as above, we can find ay, as, . . ., a, such that lt(f) =
o @i lt(g;). Let fi = f— >, a;x* “g,;. Note that, the leading term of
> iy a;x® % g; cancels the leading term of f. Therefore, deg(f) > deg(f1) and we
have f = f; modulo(gy, ..., g, )R|[x]. By induction on the degree of polynomials in
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the monomial order >, we can find a reduced f’ where ' = f; mod(g1, - .., gm)R|x].

However, f = fi, therefore f = f' mod(¢1, ..., gm)R|x]. ]

Definition 3.1.7 (Grobner basis). A subset G of an ideal I where I C Rlx] =
Rlxy,...,x,] is a Grobner basis for I if Lt(G) = Lt(I). Namely, if every nonzero
element of I is reducible modulo G. G is called a minimal Grobner basis if every

g € G is nonzero and reduced modulo G — {g}.

If it(g) € Lt(G—{g}), thatis, if g is reducible modulo G — {g¢}, then Lt(G — {g}) =
Lt(G). Thus, if G is a Grobner basis for I, then G — {g} is a Grobner basis for /,
too. In fact, we can convert any Grobner basis to a minimal one by eliminating the

elements which are reducible modulo others.

The next proposition is about the crucial property of Grobner bases.

Proposition 3.1.8 (Proposition 2.7. in [13])). Let G be a Gribner basis for I C R|x].
Then, | € I if and only if applying the reduction algorithm in Proposition to f

returns 0.

Proof. Let f € I and let f = f' mod(g1, ..., gm)R[z] where G = {¢1,..., g} and
/" is reduced modulo G. (Note that such an f” can be computed by Proposition 3.1.6)).
Since G is a Grobner basis for I, G C I. Hence, f' — f € (¢1,...,9m)R[z] C I and
f € Iimply that f" € I. If f' # 0, then Lt(G) = Lt(I) and f' € I imply that f’
is reducible modulo GG which contradicts f’ is reduced modulo G. Therefore f' = 0.
Conversely, let f = 0 mod(g1, ..., gm)R[x],s0 f = > a;g; for some o; € R[z]
which implies f € I. O

Corollary 3.1.9 (Corollary 2.8. in [13]]). If G is a Grobner basis for 1, then ideal
membership in I is decidable. That is, using G we can determine whether a given f

in R[z] is in I or not.

Proof. Let f € R[z]and G = {g1, ..., gm} be a Grobner basis for /. By Proposition
we can compute f' € Rlx| such that f = f' mod(gy,...,¢n)R[z] and [’ is
reduced modulo G. By Proposition(3.1.8} f € I if and only if f' = 0. N

Corollary 3.1.10 (Corollary 2.9. in [13]]). If G is a Grobner basis for I, then G

generates 1.
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Proof. Let G = {g1,...,9m} be a Grobner basis for the ideal I C R[z] where
Rlz] = R[z1,...,x,). By Definition[3.1.7, G C I, hence (g1, ..., 9n)R[z] C I.
Let f € I. Then, by Proposition f = 0mod(gi, ..., gm)R[zr], which means
f € (91,.-.,9m)R[x]. Therefore, I C (g1,...,gm)R[x] which proves the corol-
lary. ]

Proposition 3.1.11. Every ideal I in R[x1,...,x,] has a finite Grébner basis.

Proof. Let I be anideal in R[z1, ..., x,], then Lt(]) is also an ideal in R[x1, ..., ;).
By Hilbert Basis Theorem, Lt([) has a finite basis {hi,...,hs} C R[xy,...,z,].
Since h; € Lt(I) for all 7, we can write h; = Zjvzl a;;lt(f;;) for some a;; €
Rlxy,...,xy)and fi; € I. Let G ={g1,...,q} ={fi; | 1 <i<s,1<j <N}
Since each h; € Lt(G), we get Lt(I) = (hy,...,hs)R[z] C Lt(G). Also, G C [
implies Lt(G) C Lt(I). This proves Lt(G) = Lt(I). Since G C I, G is a Grobner

basis for 1. n

Corollary 3.1.12 (Corollary 2.10. in [13]]). If I C J are ideals in R|x] and Lt(I) =
Lt(J), then I = J.

Proof. Let G be a Grobner basis for I, then G C I and Lt(G) = Lt(I) = Lt(J).
I C Jimplies G C J. Since Lt(J) = Lt(G), G is also a Grobner basis for J. Since
G is Grobner basis of both I and J, this implies GG generates I, and GG generates J by
Corollary [3.1.10] Thus I = J. O

Proposition 3.1.13 (Proposition 2.11. in [[13]). One can compute a Grobner basis for

an ideal I in R|x] from any given set of generators of 1.

Proof. We can find proof in [[15] and [18].

Due to Hilbert Basis Theorem (see [3], pg.75-80), we proved the existence of a Grob-
ner basis in Proposition above. For k[xy,...,x,] where k is a field, we can
compute a Grobner basis for [ from a given set of generators using Buchberger’s
Algorithm (see [3] pg.88-95, [1]). In the more general case where R is a Noethe-
rian ring in which linear equations are solvable, there is an algorithm to compute a

Grobner basis of [ given in [15, [18]]. O
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3.2 Operations on Ideals

We can use Grobner bases to do basic operations on ideals in R[z]. We build following
structures which rely on an investigation by [14] that if Grobner bases are computed
according to the lexicographical order on monomials, then they have the effect of
eliminating the more “basic” variables. Below is the proposition that defines this

property in a detailed fashion.

Proposition 3.2.1 (Proposition 3.1. in [13]). Let I be an ideal in Ry, x| such that
Rly,x] = R[y1, -+, Yn, T1, - - ., L) Let >1 and >4 be two orders on monomials in
and y respectively. Define an order > by t*y® > x4 yP if 4 >, 2%, orif a* = 2
and y® >, yP'. Let G C Rly, x] be a Grobner basis for I with respect to >. Then we

have,

1. G is a Grobner basis for I with respect to the order >, on (Rly|)[z], i.e, on the

polynomial ring in x1, . . . , x,, with coefficients in R|y|.

2. GN R[y] is a Grobner basis for I N R[y| with respect to the order >4 (Gribner

basis of the elimination ideal).

Proof. (i) We begin with the following claim.

Claim 1: It~ (lt=,(f)) = lt=(f) for any f € R[z,y].

Proof of Claim 1: To find It~ (f), we order the terms of f comparing the components
containing x. Afterwards, the biggest component has a coefficient that is a polynomial
in y. Thus, if we order that polynomial with respect to >, then we get the leading

term of f with respect to > which proves the claim.

Let G = {¢1,...,9:} be a Grobner basis for I with respect to the order >. For
each g; € G, by the above claim, we have [t (g;) = It~ (It~ (g;)). Thus, lt-(g;) €
Lt-(Lt-,(G)), which implies Lt~ (G) C Lt~ (Lt~,(G)). Hence,

Lt-(I) = Lt-(G) C Lt~ (Lt (G)) C Lt (Lt>, (1)) (3.1)
since G C I. We continue with the following claim.
Claim 2: Lt~ (Lt~ (I)) C Lt-(I).
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Proof of Claim 2: Let G; = {ki,...,ks} be a Grobner basis for I with respect
to the order >y. So, I = (ki,...,ks) where k; € [ for all i and Lt~ (I) =
(lts (k1),...,lts,(ks)). Let f € Lto,(I), then f = > hi(z,y)lts, (k;) where
hi(x,y) € R|z,y] for all ¢ (since G; is a Grobner basis of I with respect to >,
ie., Lts,(I) = Lt-,(G1)). Let Ut~ (k;) = pi(y)x®. Thus, f = > hi(x, y)pi(y)x>.
Let It~ (f) have degree A. So,

it (f) = 3 qi(y)zd=ip;i(y)z* where ¢;(y)z*~% is the term of h; with degree

(A — ;) in 2. Hence,
lt>1 (f) = lt>1(z Qi(y)xAiaiki) = lt>1 (F)

where F' = > qi(y)a*~k; € I since I = (ky,...,ks). Therefore, lt-(f) =
It~ (It (f)) = lt=(lts, (F)) = It~ (F) € Lt~ (I) which proves the claim.

As a result of Claim 2 and Eq.(3.1), we get
Lt~ (I) = Lt-(G) = Lt=(Lt>,(G)) = Lt=(Lt>, (1)).

By Corollary 3.1.12} Lt~ (Lt~,(I)) = Lt-(Lt-,(G)) implies Lt-,(I) = Lt-,(G)

which proves (7).

(17) By definition of > in the ring R[y, z|, terms involving only y; variables are smaller
than the ones involving any x; variable. Hence, if a polynomial has a leading term in

y, then none of its terms can involve any x; variable, i.e., [t~ (g) € R]y] if and only if

g9 € Rly].

Let G = {91, 9u> Gusr1,---,g:} be a Grobner basis of I such that G N R[y] =
{g1,---,gu}- I N R[y] is an ideal of R[y| and we have G N R[y] C I N R[y]. To
prove that G N R[y] is a Grobner basis of I N R[y] with respect to >5, we must show
lt~,(f) € Lt-,(GN RJy]) forall f € I N R[y]. If f € I N R[y], then It-,(f) =
It (f) = S, pi(z,y)lt=(g;) since G is a Grobner basis of T and f € 1. (Note that
> and >, coincide on R[y|. Hence, It~ (g;) = lt>,(g;) fori = 1,...,u). If we write

pi(x,y) = qi(z,y) + a;(y) where g;(x,y) consists of terms of p;(z,y) involving at
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least one z; variable, then we get

t

Its,(f) = Z(qi(ﬂf,y) + ai(y))lt=(gi)

=D a)lt=y(9) + Y @il y)ltsy(g) + D pilw,y)lts(g:)

1 =1 i=u+1

= Z ai(y)lts,(g:) € Lt>,(G N R[y])

since the terms involving at least one x; variable are collected in the last two sigma
summations and they add up to zero (as the left hand side is in R[y]). Therefore,

Lt.,(f) € Lt-,(G N R[y]) which proves (ii). O
We review applications of Grobner bases in computations regarding basic ideal oper-
ations.

Proposition 3.2.2 (Computing intersection of ideals). Let I and J be given ideals in
Rlz] = R|xy,...,x,). Then INJ can be computed. In other words, we can determine
a finite basis of I N J when finite bases of I and J are given.

Proof. Let I and J be ideals in R[x]. We start with a claim.

Claim: I N J = (tI + (1 —t)J) N R[x] where t is a new variable.

Proof of Claim: tI + (1 — t).J is the ideal of R[z,t| = R[x1,...,x,,t] generated by
alltf and (1 —t)g where f € T and g € J.

Let f € INJ.So, f € limpliestf € tl. Also, f € Jimplies (1 —¢)f € (1 —1)J.
Therefore, f = tf+(1—t)f € tI+(1—t)J. Hence, we have f € (t/+(1—t)J)NR]x].

Now, let f € (tI + (1 —t)J) N R[x]. Then, we can write f as

N
F= ki(w )t +Zk; (z,t)(1 — t);(x)
=1

for some [; € 1 andl_j € J. Note that, f € R[z,t] and f has no terms involving t.
Substituting ¢t = 0 we get f(x) =0+ ZJ L k;(x,0)l;(z) € J. Similarly, substituting
t =1wegetf =" ki(z,1)li(z) + 0 from above, hence, f € I. Therefore,
f € I N J which proves the claim.
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By this claim and the elimination theorem (see, Proposition [3.2.1](ii)), we get an al-

gorithm for computing intersection of ideals.

If weletI = (f1,..., fx),and J = (g1, ..., gm) be ideals in R[zy, ..., x,], then we
can compute a Grobner basis G for the ideal t1 + (1 — ¢t)J = (tf1,...,tfx, (1 —
g, (1 = t)gm) C Rlzy,...,z,,t] with respect to the lexicographical order
where ¢ > x; for all 7. The elements of this Grobner basis G that do not contain
the variable ¢ form a Grobner basis of the ideal (t/ + (1 —¢).J) N R[z] = I N J (that
is, G N R]x] is a Grobner basis of 1 N J). O

Proposition 3.2.3 (Computing ideal quotients). Let I and J be given ideals in R|x]| =
Rlzy,...,x,]. Then I : J can be computed provided the generators of J are not zero

divisors.

Proof. Let I = (f1,..., fs) and J = (g1,...,gx) be ideals in R[x]. We first prove a

claim.
Claim 1: T:J=1:(g1,...,q¢) = ey T : (90).

Proof of Claim 1: I : {g1,...,9x) = {f € Rlz] | fg € [ forall g € {(g1,...,9x)}
If fel:{g,...,gk),then foreach g = h;g; where h; € R[z], we get fh;g; € |
since h;g; € (g1,...,9x). Thus, f € I : (g;) foralli € {1,...,k} which implies
f e ﬂlel : (g;). Conversely, if f € ﬂlef : (g;), then fh;g; € I for all i and
h; € R[z]. Hence, if g € (g1,...,gx), then g = hyg; + -+ - + hypgy where h; € Rlx].
Therefore, fg = fhig1 + -+ + fhrgr € I which shows f € I : (gq,..., gx) and this

proves the claim.
As aresult, if we can compute each [ : (g;) then we can compute [ : J.

Claim 2: Let {hy,...,hs} be aabasis of I N (g;). Then a basis of [ : (g;) is given by
{h1/gi, ..., hs/g;} provided that g; is not a zero divisor.

Proof of Claim 2: Note that, we can compute {h1, . .., hs} by Proposition[3.2.2] Since
gi(hj/gi) = h; € I, we have (hi/g;,...,hs/g;) C I :{g;). Now, let f € I : (g;).
Then, fg; € I and fg; € (g;) which means fg; € I N (g;). We can write fg; =
arhy + - -+ + ash, for some a; € R[z| which gives f = ai(h1/g;) + -+ + as(hs/g:)

since each h; is divisible by g; (as h; € (g;)) and g; is not a zero divisor. This shows
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I:{g;) C{(h1/gi,-..,hs/g;) which gives the equality and proves the claim.

After computing a basis for each I : (g;) as in Claim 2, we can compute [ : J as the

intersection of these ideals using Proposition[3.2.2] O

Proposition 3.2.4 (Computing the kernel of a homomorphism). Let I be an ideal
in R[xq,...,x,). Then the kernel of a given homomorphism ¢ : Ry, ..., Ym] —

Rlzy, ... ,x,]/1 can be computed.

Proof. Let ¢ : R[y] — R[x]/I be a homomorphism given by ¢(y;) = f; + [ where
fi € R[z| fori e {1,...,m}.

Claim: J = (y1 — f1, .-, Ym — fm, I)R[x,y] N R]y] is the kernel of the above homo-

morphism ¢.

Proof of Claim: Suppose I = (G4,...,Gg) and F' € J where F = F(y1,...,Ym)-
Then,

F = Hl(a:,y)(% - fl) + -+ Hm(*ruy)(ym - fm) + ZLj<I7y)Gj

j=1

for some H;(z,y) € R[x,y| and L;(z,y) € R[z,y]. Note that, since F is a polyno-
mial and ¢(y;) = f;+1 for the homomorphism ¢, we have ¢(F') = F(f1,..., fm)+1.
Thus,

m

¢(F) = (Z Hi(fﬁl, N ,In,fl, ce ,fm)(fz - fz>+
k
ZLj(Ilw"7xn7f17“'afm)Gj)+[

k
:O—i_(ZL]('xl?7xnaflaafm)G])+I:O+I

Since Z?Zl Li(z1,...,2n, f1,..., fm)G; € I. Therefore, F' € Ker(¢).

Conversely, let F' € Ker(¢). So, ¢(F) = 0in R[x]/I. Here, F = F(y1,...,Ym) €
Rly]. Hence, ¢(F) = F(f1,..., fm) € L.
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We can write, F'(y1,...,ym) = F((v1 — f1) + fi, -, (Ym — fin) + fm). If we take a

term of F', we have

cyt - ynm =cilyr — fr + 1) (Y — fon + )

where ¢; € R. After binomial expansion, this term becomes (3.1, H;(x)(y1 —

)P (Y = fon)P™) + i f1 -+ fom where (B, - - -, Bim) # (0,...,0).

As aresult, F(yi,....ym) = G(x,y) + F(fi,..., fm) where, G(z,y) € (y1 —

fi,- s Ym — fm). Since F(f1,...,fm) € I, we obtain F' € (y; — f1,...,Ym —
fm, I)R[z,y] N Rly|] = J, hence Ker(¢) C J which proves the claim and the propo-

sition.

Note that, J is computable since by using a lex order where x; > y; for all 7 and 7,

we can compute the elimination ideal (v4 — f1, ..., Ym — fm, [)R[z,y] N R]y] using
Proposition [3.2.1] O

Corollary 3.2.5 (Computing the ideal of polynomial relations among polynomials).
For a given set of polynomials { f1, ..., fm} C Rlx], the ideal of polynomial relations
satisfied by fi, ..., f, can be computed.

Proof. In Proposition 3.2.4] if we take I = (0) and ¢ : R(y1,...,ym) — Rlz] =
R[z]/I where ¢(y;) = f; for all i, then we get h(fi,...,fn) = 0 if and only
if h(y1,...,ym) € Ker(¢). Therefore, the ideal of polynomial relations among
fis- .., [ is exactly Ker(¢) which can be computed by Proposition 3.2.4] O

Proposition 3.2.6 (Computing the saturation of an ideal at an element). For a given

ideal I in R[x], IR[x]f N R[x] can be computed for any nonzero divisor f € R|x].

Proof. Here, Rlx]; = S™'R[x] where S = {f"| n > 0} and IR[z]; is the ideal
generated by I in R[z];.

Claim: R[x]; = Rx,t]/(tf — 1) where f € R|x], t is a new variable.

Proof of Claim: Let ¢ : R[z,t] — R|x]; be a homomorphism given by g(x,t) —
g(z,1/f). ¢ is an epimorphism since we can replace every (1/f)° in h € R|[x]; by
t* and get a polynomial in Rz, t].
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First, we show Ker(p) = (tf — 1).

Let h(x,t) € (tf—1), then we have h(z,t) = g(x,t)(tf —1) where g(x,t) € R[z,t].
Hence, p(h(z,t)) = h(z,1/f) = g(z,1/f)((1/f)f—1) = 0 which implies h(z,t) €
Ker(p).

Conversely, let h(z,t) € Ker(p). Let (tf — 1) 1 h(z,t). So, by reduction algorithm
in (R[z])[t] (see Proposition [3.1.6), we get h(z,t) = (tf — 1)g(z,t) + r(z,t) where
r(z,t) # 0 such that r(z, t) is reduced modulo (¢ f — 1). Then lt(¢tf — 1) { it(r(z, 1)),
ie, f(z)ttlt(r(z,t)). M weletr(z,t) = ag(2)t™ + a1 ()t + - + a1 (2)E +
am(x), then f(x)t 1 ag(x)t™ implies f(x) 1 ap(x) if m > 1.

On the other hand, h(z,1/f) = (0)g(z,1/f) + r(z,1/f) = 0 implies

r(z,1/f) = ao(x)(1/f™) + -+ 4+ am-1(1/f) + am(x) = 0. In the case m > 1, after
equating the denominators, f(z) divides ag(x) which contradicts the above implica-
tion. If m = 0 then r(z, 1/ f) = 0 implies ao(z) = 0. Hence (tf — 1) | h(z,t) which

is again a contradiction. Thus, the claim is proven by the first isomorphism theorem.

Define ¢ : R[z| — R[z,t]/{tf — 1) by ¢(g) = g + (tf — 1). ¢ is a monomorphism
(91,92 € R[x] and (tf — 1) | (g1 — go) implies g; = ¢2) and ¢(R[z]) is the isomor-
phic copy of R[z] in R[x,t]/(tf — 1). If we identify R[z|; and R[z,t]/(tf — 1) by
the isomorphism in the above claim, then / R[z|; is generated by all g + (tf — 1) in
Rz, t]/(tf — 1) where g € I (i.e., generated by ¢/(I)). Hence, IRz is given by
J/(tf —1)in R[x,t]/(tf — 1) where J = (I,tf — 1) R[z,t]. Since 9 is a monomor-
phism, every coset in ¢( R[z]) is represented as g(z) + (tf — 1) by a unique g(x) €
R[x]. Therefore, I R[x]; N R[x]is given by J/(tf —1) N (R[z]) in Rz, t]/(tf —1).
Let h(z,t) + (tf — 1) € (J/{tf — 1)) NY(R[z]), then h(x,t) € J and h(z,t) =
h(z) + (tf — 1)k(z,t) for some k(x,t). Thus, h(z,t) + (tf — 1) = h(x) + {tf — 1).
Since h € Jandtf — 1 € J we get h(z) € J. Hence, h(x) € J N R[x]. This shows
w(J N R[z]) = (J/({tf — 1)) N (R|x]). Therefore, since ¢ is a monomorphism,
IR[z]; N R[x] which is given by ¢(J N Rz]) in R[z,t]/(tf — 1) is isomorphic to
J N R[z] in R[z]. Therefore, by the above identification, we get I R[z|; N R[x] =
JN R[z] = (tf —1,I)R[x,t] N R[z].

We can compute J N R[z]| by using a Grobner basis of J with respect to a lex order
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where ¢ > z; for all 7 as in Proposition [3.2.1] (ii). O

In Proposition ii), we saw that if G is a Grobner basis of the ideal / C R|z, y]
with respect to the order >, then G N R]y| is a Grobner basis for / N R[y| (with respect
to the order >5). In particular G N R is a basis for / N R. This can be described in a

complete manner as follows.

Proposition 3.2.7 (Proposition 3.3.i in [13]]). Let I be an ideal in R|x] and let p :
R[z] — (R/(I N R))[x] be the quotient map. If G C I is a Grébner basis for I, then

1. GN R generates I N R and p(G) is a Grébner basis for p(I).

2. G is a minimal Grobner basis for I if and only if G N R is a minimal basis for
INR, p(G -GN R) is a minimal Grébner basis for p(I) and p(lt(g)) # 0 for
allg € (G—GNR).

Proof. (i) We begin with a claim.
Claim: p(Lt(I)) = Lt(p(1)).

Proof of Claim: If f = Zi\il a;x* where a; € R and a; € N, then p(f) =
SOV | @z where @ € R/(INR). Hence, either p(It(f)) = 0 or p(It(f)) = lt(p(f)).
Therefore, p(Lt(I)) C Lt(p(I)). Conversely, if f € I, let f = fy + f1 where
p(fo) = 0 and p(It(f1)) # 0. In particular, fy € I since all coefficients of f; are in
INR,hence f1 = f—fo € Tand lt(p(f)) = lt(p(f1)) = p(lt(f1)) € p(Lt(1)). Thus,

Lt(p(I)) C p(Lt(I)). Therefore, p(Lt(I)) = Lt(p(I)) which proves the claim.

Now, if GG is a Grobner basis for I, then by Proposition [3.2.1{ii), G N R generates
I'N R. Since Lt(G) = Lt(I) and p(Lt(I)) = Lt(p(I)), we have Lt(p(I)) =
p(Lt(I)) = p(Lt(G)) C Lt(p(G)) < Lt(p(I)) implying Lt(p(I)) = Lt(p(G)).
Hence, p(G) is a Grobner basis for p(I). Note that, if G = {gi,...,9s}, then
P(LE(G)) = p({It(g1), - - 1t(,))) = (p(1t(91)), - -, p(12(5))

= WHp(00))s - H(p(9)) © ((p(a0)),- - 1(p(2))) = Th(p(G)) where with-
out loss of generality, p(lt(g;)) = 0 for r < i < s and p(lt(g;)) # 0, hence

p(lt(g;)) = lt(p(g;)) for 1 < j < r. Since G C I we have p(G) C p(I) which
implies Lt(p(G)) C Lt(p(I)).
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We can prove (i7) by using definitions and (7). O

We can obtain ring of fractions of R[x] by using multiplicative subsets of R. Grobner

basis has a useful property regarding this process which is as follows.

Proposition 3.2.8 (Grobner basis of ideals in ring of fractions). Let .S be a multiplica-
tively closed subset of R. If G is a Grobner basis for an ideal I C R|x], then G is a
Gréobner basis for the ideal S™'I C (S7'R)|x].

Proof. We begin by proving the following.
Claim: Lt(S™'T) = ST'Lt(I).

Proof of Claim: Let G = {fi,..., fx} be a Grobner basis for I. We have S~'1 =
{(flala €S, fel}where fla =S (hifi/a)suchthata € S, f; € G, h; €
R[z]. Thus, Lt(S7') = (it(f/a) | f € I, a € S). We know that lt(f/a) = It(f)/
by basic ring axioms. Hence, (It(f/a) | f eI, a € S) = (it(f)/a|fel, a € l)
and since « € S are units in S'R, we have (It(f)/a| f €I, a € S) = (lt(f)| f €
I) where (It(f)) as ideals of S~ R|[x]. Thus, Lt(S~'I) = (It(f) |f € I) in ST' R[z].
Now, STILt(I) = STYWit(f) | f € I) = (It(f) | f € I) = Lt(S7'I). This proves

the claim.

By definition of Grobner basis, Lt(I) = Lt(G), hence Lt(S™'1) = S™'Li(I) =
STULHG) = (it(g) | g € G) in ST'R[x] by above claim. This implies Lt(S™) =
Lt(G) in S~ R[x] which proves the result. O

Now we look at an important property about the saturation ideal which relates it to

the leading term ideal.

Lemma 3.2.9 (Lemma 3.5 in [13]]). Let T' C S be multiplicatively closed subsets of
R, let I be an ideal in Rx). If

ST Lt(I) N Rlx) = T~ Lt(I) N R[7]

then

ST'I'NR[x] =T 'I N R[z].
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Proof. Since T C S are multiplicative subsets of R, we have R[z] C T 'R[z] C
S~!R[z] as ring extensions. Moreover, T C S implies T7'(S™'R) = S~'R. Now,

we need some claims.
Claim 1: Lt(ST' INT'R[z]) C Lt(S7'T) N T~ R[z].

Proof of Claim 1: Note that Lt(S~'INT ' R[x]) is the leading term ideal in T~ R[]
and we have Lt(S~'INT'R[z]) C T~'R[x]. Also, ST' INT'R[x] C S~ which
implies Lt(S™'I N T'R[x]) C Lt(S™'I) as ideals in S~ R[z]. This proves the

claim.

Moreover, we have Lt(S™'T) N T™'R[z] = S~'Lt(I) N T~'R[z] by the claim in
Proposition [3.2.§]

Claim 2: ST'Lt(I) N T7'R[z] = T~ (ST Lt(I) N R[x]).

Proof of Claim 2: First of all, since T C S, T~'(S™'Lt(I)) = S™'Lt(I). Hence,
T=YS7ILt(I) N Rlx]) € ST Lt(I), and clearly T~ (S~ Lt(I) N R[z]) C T~ R|x]
which implies RHS C LHS. To prove LHS C RHS, let F = Zi@lt(fi) €
STYLt(I) N T~ R[z] where h; € R[z], s; € S and f; € I. Since F € T‘ljé[x], F =
G/t for some G € Rlxz], t € T which gives G = tF = Y, t—h'ilt(fi) e STLLi(I).
Thus, G € S~'Lt(I) N R[x|. Therefore, F = G/t € Tfl(S*Sth(]) N R[z]). This
proves the equality of both sides.

Now, by the assumption of the lemma, T~ (S™'Lt(I) N R[z]) = T-YT'Lt(I) N
Rlz)).

Claim 3: T-Y (T~ Lt(I) N R[z]) = T~ Lt(I).

Proof of Claim 3: Since Lt(I) C T~ Lt(I) N R[z], we get RHS C LHS. And since
T—YLt(I) N Rlx] € T~'Lt(I), the ideal generated by T-'Lt(I) N R[x] in T~ R[z]
which equals LHS is a subset of T~'Lt(I). (The ideal generated by a subset of an
ideal is a subset of that ideal). Hence, we get LH.S C RH.S which proves the claim.

We have T~ Lt(I) = Lt(T~I) by the claim in proof of Proposition [3.2.8]

Claim4: T~'I C ST' INT ' R[x].
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Proof of Claim 4: We have T~ C S~'I since T' C S. Moreover, T~'I C T7'R[z],

too. Hence the result follows.

As a summary of all these claims and arguments, we have shown that Lt(S‘lf N
T 'R[z]) C Le(ST')NT ' Rlz] = ST Le(I)NT ' Rlz] = T~ (S Lt(I)NR[x]) =
T-NT-'Lt(I) N R[z]) = T'Lt(I) = Lt(T~'I) C Lt(S~I N T-'R[z]). This
proves Lt(S™'I N T~'R[z]) = Lt(T~*I). Using Corollary 3.1.12} we get S~'I' N
T~'R[z] = T~'I. If we intersect both sides with R[z], then we prove the lemma. [

Remark: If we take 7' = {1} in the Lemma then S~'I N R[x] = I provided
that S™'Lt(I) N R[z] = Lt(I), i.e., if Lt(I) is saturated with respect to S, then so is
I. In fact, according to this lemma, we can compute the saturation of / with respect
to S using a “smaller” multiplicative set 7T, in case this change of sets does not have

an effect on the leading term ideal.

Corollary 3.2.10 (Proposition 3.6 in [13]). Let S be a multiplicatively closed subset
of R, let I be an ideal in R[x|. If for some s € S,

SULt(I) N Rlz] = (LT(I)R,[z]) N Rlz]

then

S~'I'N R[z] = IR,[x] N R[z].

Proof. In Lemma if welet T = {s" | n > 0}, then the result follows since
T-'R[z] = RyJz] and T~ Lt(I) = Lt(I)R.[z] and T'I = IR,[]. O

By Corollary[3.2.6] we can compute I R[] N R[], thus we can compute S~11 N R|z]
if we can find an s € S satisfying the assumption of Corollary Therefore,
Corollary evolves the problem of computing the saturation S~'7 N R[x] of an
ideal I in R[] to an equivalent problem for ideals generated by leading terms. The

computability of solution depends on R and S.

The localization Rp at a prime ideal P C R is another issue if we let S = R — P
in aforementioned results. In the special case that the prime ideal P is principal, the

saturation of I with respect to P can be computed using the following proposition.
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Proposition 3.2.11 (Proposition 3.7 in [13]). Let R be an integral domain, (p) C R
be a principal prime ideal. For any given ideal I C R[z|, it is possible to find
s € R — (p) such that

IRg)[z] N Rlz] = IR,[x] N R[z].

In particular, 1 R,)[x] N R[z] can be computed.

Proof. We need to prove a claim beforehand.

Claim 1: 1f R is a Noetherian domain, then (),—, (p*) = (0), where (p) is a prime

ideal in R as above.

Proof of Claim 1: Assume (),—, (p") # (0). Then there exists an element a such that
a € (p*) for all k. Hence, a/p ,a/p?, ... are elements of R. Thus, we can form an
ascending chain of ideals (a/p) C (a/p*) C --- C (a/p™) C ... because inductively,
we have a/p™ = p(a/p" ") for all positive integer n. However, R is Noetherian and
this chain must stabilize for some m. Therefore, (a/p™) = (a/p™"') = ... which

implies p is a unit contradicting (p) being a prime ideal. This proves the claim.

Therefore, for any r # 0 in R, there exists an integer k£ > 0 such that r € (p*) but
r & (p**1). Hence, r = sp® for some s ¢ (p). This s and k can be computed by ideal
membership algorithm. Let G = {¢1, ..., g.} be a Grobner basis for I. So, lt(g;) =
1<i<r).

s;p¥ixi where s; ¢ (p) as mentioned before. Thus, Lt(I) = (s;p"izi

Claim 2: Lt(I)R,[z] = (pFiz

1 < i < r) for the prime ideal (p) in R.

Proof of Claim 2: We have R,y = S™'R where S = R — (p) and (p) is a prime ideal.
If s; ¢ (p) for all 7, then s; € S for all i where s; is a factor in the leading coefficient
of the above mentioned g;. Since Lt(I) is generated by s;p*iz in R[z], so is its

1<i<r) = (phiah

extension to R, [x]. Thus, Lt(I)Ry)(z] = (siphixi 1<

i < r) since s; are units in Ry, this proves Claim 2.

Claim 3: Lt(I)Rg)lx] N Rlz] = (p*z? | 1 < i < r) in R[z] for the prime ideal (p)

in R.

Proof of Claim 3: Let f € (pFizdi |1 <i <7r), then f = >__, hi(z)p"z? where
hi(z) € R[z],hence f € R[z]. Since p*iz?i € Lt(I)Ry[z], f € Lt(I) Rz NR[z].
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Conversely, if f € Lt(I)Rg)lz] N Rlz], then f = >"I_ (fi(x)/c;)p* z* where
fi(z) € R[z] and ¢; € R — (p). For B > min{A;}, the term in 2% in the sum
is >0 (di/c;)xB~AiprizAi where (d; /c;)2B~ is the term of f; with degree B — A;.
Here, d; = 0 if no such term exists. After equating the denominators, the coeffi-
cient of 2% is 37 | (D;/C)p*" € R, where C € R — (p), D; € R. We have
> i (DOt = 300 (Dip™)/C. Let k = minp,zo{ki}, then 357, Dip =
rp™ where r ¢ (p) and M > k. Thus, > ;_ (Dpp*)/C = (rpM)/C € R since
[ € Lt(I)Ry)lz] N R[z]. Let (rp™)/C =t € R, so tC = rp™ where C' ¢ (p)
and (p) is prime. Thus, p™ | t, hence, t € (p). This implies t = p™¢ where
t = r/C € R. Therefore, > ;_ (D;/C)p*i = (rpM)/C = tp™. Thus, the term
in 28 is "raB = ipMaP = fpM—kiphi B4 24 where k; = minp, z{k;} as above.
If we arrange this term, we get ip™ FigB~4ipkigd where t € R, pM % € R and

tpM~kigB=4i ¢ R[z] . Thus, the term in 2% is in the ideal (p*2z% | 1 < i < r)in

R[z]. Hence, adding up all these terms in 2% we get f € (pfiz?i | 1 <4 < r). This

proves the claim.

For a similar result in R,[z]|, we need to find an s € R — (p) such that every s; is
invertible in Rg[x]. If we let s = []s; then s; are invertible in R, since 1/s; =
(51--+8i_18i11- -+ 5n)/s. Hence, Lt(I)Rz] = (s;pFixdi | 1 < i < r)Rz] =
(pFiz?i | 1 <4 < r)Ry[z]. Asin the proof of Claim 3, (pFiz?i | 1 <i < r)R,[z] N
R[z] = (p*i2z4i | 1 < i < r) which means (p*iz?i

ring extension R, [z]. Since s € R — (p), we have the extensions R[z] C R,[x] C

1 <4 < r) is saturated in the

Rplz] and (p*iz4i | 1 < < r) is also saturated in the intermediate extension R, [z]
Ge. (p 1 < i < r)Ryz] N R[x] = (pFa?i | 1 < i < r)). This gives
Lt(I) R [z]) N R[z] = (pFizAi |1 <i < r)R,[z]N Rlx] = (p*izti |1 <i < 7). Thus,

we obtain

i g As

Lt(I) Ry [z] N R[z] = Lt(I) Ry[z] N Rlz] = (phia™

1<i<r).

Since Lt(I)Ry)lx] = ST'Lt(I) where S = R — (p), and Lt(I)R,[z] = T 'Lt(I)
for T = {s* | k > 0}, we can use Corollary to conclude that /R, [x] N
R[z] = IR[xz] N R[z| and IR, [x] N R[z] is computable by using Grobner basis
since I Ry[z] N R[z] can be computed by Proposition [3.2.6] O

Corollary 3.2.12 (Corollary 3.8 in [13l]). Let R be an integral domain, K be the
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quotient field of R. Then for any given ideal I C R[z|, I K[z]|NR[z] can be computed.

Proof. If p = 0 in Proposition (3.2.11] then R becomes the quotient field of R,

hence the result follows. L]
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CHAPTER 4

ALGORITHMS FOR COMPUTING PRIMARY DECOMPOSITION USING
GROBNER BASES

4.1 Primality Test

The Grobner basis techniques for operations on ideals described in the previous chap-
ter have an application to test whether an ideal I C R[z] is prime or not. The algo-

rithm relies on the following observations.

Lemma 4.1.1. Let I C R|x] be an ideal. I is prime if and only if I N R is prime and
the image of I in the canonical homomorphism from R|x] to (R/(I N R))|x] is prime.

Proof. See [12], Ch.3, Theorem 11. O]

Lemma 4.1.2. Let R be an integral domain, K be the quotient field of R. If I is an
ideal of R[x] such that I N R = (0), then I is prime if and only if I K[x] is prime and
I = IK[z] N R[z].

Proof. See [12], Ch. 4, Corollary 1 of Theorem 16. L]

Before stating the crucial tool for primality test, we make some assumptions. We
suppose we can decide whether an ideal is prime in the ring R. We also suppose
we can test whether polynomials in one variable over fields of fractions of residue
rings of R[] are irreducible (for example, if R is a prime field or R = Z, then this

condition holds).

Proposition 4.1.3 (Proposition 4.3 in [[13]]). It is possible to decide whether an ideal

in R[z] = R[z1,...,x,] is prime.
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Proof. We will use induction on the number of variables. For the base step, if the
number of variables is zero, then we know that we can check if an ideal I C R is
prime in R by the assumptions on the ring R. Assume when the number of variables
is less then n, we can test the primality of an ideal /. Suppose [ is an ideal in R[ml] =
Rlzy, ..., x,)[x1] where R = R[xy,...,x,). I is prime in R[z] if and only if I is
prime in R[z;]. Now, we need to check whether [ is prime in R[z;]. For this purpose,
we apply Lemma tol C f%[xl] and first check the primality of / N R. We find a
Grobner basis G of 1. Hence, by Proposition ii), a Grobner basis of / N R can
be found as G N R, where G is a Grobner basis for I (using a lex order with x; as the
largest variable). Now, I N R is an ideal in R = R|xg, ..., x,]. Number of variables
drops by one. By inductive hypothesis, we can decide if I N R is prime or not in R.

Hence, we recursively start the algorithm from the beginning for / N R in R:

If I N R is not prime in R, then [ is not prime in R[z] due to Lemma IfINR
is prime in R, then we continue. We check if the image of I in (R/(I N R))[z] is
prime by Lemma We introduce a new notation for practical purposes: [’ :=
image of I in (R/(I N R))[zy] and I° := I N R, hence (R/(INR))[z1] = (R/I°)[x1]
and R := R/I°.

With this notation, [’ is an ideal in R’[x;]. By the reason of our continuation, /¢ =
INRis prime in R. Thus, R’ = R/ I¢ is an integral domain. For future usage of

Lemma.1.2] we need a claim.
Claim: '\ R' = (0) in R'.

Proof of Claim: Let ¢ : R[x;] — (R/(I N R))[z1] be the canonical homomorphism
suchthat R = R[zs, ..., x,]. Hence,y € ¢(I) = I'ifand only if y = ¢(f) = 3. asz!
for some f = Y a;2% € I where a; € R. So,y € I' "R = ¢(I) N (R/(I N R))
if and only if 3 a2t = @ in ' = R/(I N R). Hence, @; = 0 € R/(I N R) for
all i € {1,...,d} where d = deg(f). Thus, a1,...,ag € I N R C I. Therefore,
ap = f—ayxy —---—aqgxd € I. Since ag € R, ag € INR. Thus, y = 0 mod (I N R)

which proves the claim.

Let ¢ : R[z1] — R'[z1] = (R/(I N R))[z1] be the canonical homomorphism. So,

if f=agr?+ag 128"+ + arzy + ag then ¢(f) = agaf + agxf 4+ +
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a1, + do where ¢(a;) = @;in R/(I N R). (i.e. @ = a; + (I N R)). Since we know
the generators of I’ in R'[z1] (¢(G) generates ¢(I) for a Grobner basis G of I by
Proposition [3.2.7(1)), we can compute I’. Now, we can use Lemma since R’ is
an integral domain, I'NR’ = (0) and I’ is an ideal of R'[x,]. We let K’ be the quotient
field of R'. So, I is prime in R'[x,] if and only if the following two conditions are

satisfied:
1. I'K'[z4] is a prime ideal in K'[x].
2. I’K’[xl] N R’[xﬂ =1T.

For 1., we have I’ C R'[z1] an ideal, so, let I’ = (fi,..., f.) in R'[z1], where
fi = &(f;) for ¢ given above where {f;}'_, generates I in R[z;]. I'K'[x] is an
extension ideal of I’ in K’[z4], so it is generated by {f;}_,, too. Since K" is a field,
K'[x;] is a PID. Thus, I' K'[x4] is a principal ideal in K'[z4]. Hence, I' K'[z1] = (F)
for some F' € K'[x1]. So, (fi,...,f,) = (F). To find F in K'[z,], we either find
GCD of fi,..., f, using Euclidean Algorithm or find a reduced Grobner basis of
(fi,..., f,) in K'[x;]. Therefore, this reduced Grobner basis must consist of one
element ¢/ where c is a unit in XK', ¢ # 0. Now, I’ K'[x;] = (F') is a prime ideal in
K'[z4] if and only if F is an irreducible polynomial in K'[z]. This is computable by

our aforementioned assumption.

For 2., we check if I'K’[z,] N R'[x1] = I' = (f1,..., f.). We use Corollary [3.2.12
to compute the generators of I’K’[x;] N R'[x;] and we check if two ideals I’ and
I'K'[z1] N R'[x,] are the same by Grobner basis techniques (ideal membership algo-

rithm). [

As a result of the previous proposition and its proof, we obtain the following algo-

rithm for testing the primality of ideals.

Algorithm 4.1.4. PT(R; x; I). Primality Test

Input: Ring R; variables x = xy,...,z,; ideal I C R|x] (here, I is given means we

know the generators of I).

Assumptions: We can test primality of ideals in 2. We can test irreducibility of

univariate polynomials over quotient fields of residue rings of R|x].
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Output: TRUE if [ is prime, otherwise FALSE.

Step 1: If n = 0, then if I C R is prime, then return TRUE, otherwise return FALSE

(by using our assumptions on R, we know how to test the primality of [ C R).

Step 2: Compute .J = INR[x,, . . ., x,] (by Proposition[3.2.1(ii)). Note that J = INR
in the proof of Proposition [4.1.3]

Step 3: If PT(R;xy,...,x,;J) = FALSE then return FALSE. (By the inductive
hypothesis, we can check whether .J is prime. The number of variables is reduced by

one, and the algorithm will stop when the number of variables drops to zero (Step 1)).
Step 4: Let R’ = R[za,...,x,]/J and I" = I R'[z,], K’ = the quotient field of R'.

Step 5: Compute I'K’'[x;] = (f) (since we are in a Euclidean domain, we apply
Euclidean Algorithm to the generators of [’ to find their GCD or we find a reduced
Grobner basis for I’, since generators of I” also generate I’ K'[z1] and K'[x1] is a

PID).

Step 6: If f is not irreducible over K’ (implying I’ K'[x4] is not prime) then return
FALSE (this irreducibility can be tested by assumptions). Else if f is irreducible, then
go to Step 7.

Step 7: Compute (I')* = I'K’'[x1])NR'[x1] (by Corollary3.2.12|and by using Grobner

bases).

Step 8: If (I')° C I’ then return TRUE, otherwise return FALSE. (By Proposition
we can find generators of (1) and we can test whether each generator is in I’
or not by ideal membership algorithm and Grobner basis. Since obviously I’ C (1),
(I')c C I implies (I")*¢ = I’ and if this is true, I’ is prime by Lemma [4.1.2) which

implies primality of [.

4.2 Zero-dimensional Ideals

In this section, we investigate the properties of ideals that have Krull dimension zero.

We introduce Grobner basis techniques to characterize zero-dimensional ideals.
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Definition 4.2.1. Let R be a commutative ring which is not trivial (Or # 1g). Krull

dimension of R is the maximal length | of a chain of prime ideals of R such as Py C

P, C .- C P (see [2] p.827).

Definition 4.2.2. Krull dimension of an ideal I of a nontrivial commutative ring R is
the Krull dimension of R/, that is, maximum length of ideal chains I C Py C P C

.-+ C P, where P, are prime ideals of R for all i.

Definition 4.2.3. If R is as above and I is an ideal of R, then I is zero-dimensional
if there exists no prime ideal P such that I C P C M where M is any maximal ideal

containing 1.

Zero-dimensional ideals have very interesting properties. Computing their primary
decomposition is possible under a few extra conditions. Here we show that if specific
conditions are satisfied, then we can determine whether an ideal is zero-dimensional

by examining its Grobner basis.

Lemma 4.2.4 (Lemma 5.1 in [13]). Let I C R[x] be an ideal such that I N R is
zero-dimensional. Then I is zero-dimensional if and only if R|x]/I is integral over

R.

Proof. Let R[z]/I be integral over R. So, it is integral over the subring R/(I N R) C
Rx]/I since if f(a + I) = 0 in R[z]/I for a € R[z] and a monic polynomial
f(z1) € R[x1], then f(a) € I and if we let f(z;) = Y &} where ¢ = ¢; + (I N R)
and f(z,) = Y. cat, we get f(a +1) = f(a)+1 = 0+ I in R[z]/I. Note
that f(z;) € R/(I N R)[x,] is also monic. By Corollary A.4.2 in [17], pg. 291,
R/(INR) and R[z]/I have the same dimension since this is an integral extension. By
assumption, / N R is zero-dimensional in R, hence this implies [ is zero-dimensional

in R|[x].

For the converse, assume that [ is zero-dimensional in R[z]. Let I = (", Qs be
a primary decomposition of I. Let M}, = /Qy. Since I is zero-dimensional and
IcVI= () M, C M, where each M, is prime (an associated prime of ), we obtain
M}, is maximal in R|[x] (the only prime ideals which can contain a zero-dimensional
ideal are maximal ideals). Therefore, M} N R is prime in R (note that M N R # R,
otherwise 1 € M, contradicting M} being maximal). We have, INR C M;NR where
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I N R is zero-dimensional and M N R is prime, which again implies that M; N R
is maximal in R. Now, the field R|x]/M) is a finite algebraic extension of the field
R/(M; N R) by Hilbert’s Nullstellensatz. (See Corollary 7.10 in [10], pg.82). Hence,
for any h € R[z], we have h + M, € R[x]/Mj is algebraic over R/(M; N R). The
minimal polynomial of h + My is fi.(x1) = Y ¢zt where fi(21) = Y cixt € R[]
and ¢; = ¢; + (M}, N R). Here, f} is monic and fi.(h + M) = 0+ M, = fi.(h) + M,
implies fi(h) € My. Since My, = /Qy, we have (fi(h))™ € Qy for some N > 0 for
all k. Thus, F(h) = [[,(fx(h))™ € N Qr = I which implies R[x]/I is integral over
R. (i.e. this product being in [ is an expression of integral dependence for & mod /.

F(h+1)=F(h)+1=0+1in R[z)/I and F is monic). O

Proposition 4.2.5 (Proposition 5.2 in [13]). R[z]/I is integral over R if and only if

(x1,...,xn) C/Lt(I).

Proof. Let R[x]/I be integral over R. Hence, for each i, there exists a monic poly-
nomial f(y;) € R[y:] such that f(z; + 1) = f(z;) + I = 0+ I in R[z]/] which
means f(z;) € I. Thus, It(f(x;)) € Lt(I), but lt(f(z;)) is a power of x;, hence
x; € \/Lt(I). For the converse statement, by Proposition 5.1 in [10], pg.59, if we
can show R[z]/I is finitely generated as an R-module, then we can conclude that
it is integral over R. Assuming (v1,...,7,) C +/Lt(I), let 27" € Lt(I). Con-

sider the finitely generated R-module K = ) Rzx{'---z9. If we show that

a; <m; n

the R-module homomorphism ¢ : K — Rlz|/I is surjective, then since K is a
finitely generated R-module, R[x]/I is a finitely generated R-module, too. Note
that, here ¢(h) = h + I for h € K. Let f € R[z], consider f + I € Rlz]/I.
We will prove that ¢ is surjective by induction on the degree of f. If deg(f) = 0
then f = ¢ € Rand f + 1 = ¢(c) since ¢ € K. Assume g + [ is in the im-
age of ¢ for all g such that deg(g) < deg(f). We can assume f ¢ [ (if f € I,
then f +1 = 04+ 1 = ¢(0) and f + [ is in the image). By reduction algo-
rithm (Proposition [3.1.6)), there exists f € R[z] such that f/ = f mod I and
It(f) ¢ Lt(I). Thus, lt(f') ¢ («1",..., ) C Lt(I). Therefore, lt(f') € K.
Moreover, since f — f' € [ and lt(f') ¢ Lt(I), we have lt(f — f') # It(f').
Hence, deg(f') < deg(f). This implies, deg(f" — lt(f")) < deg(f') < deg(f).
By the inductive hypothesis, (" — lt(f')) + I = ¢(h) for some h € K. Therefore,
O(Ut(f) +h) = o(It(f) + o(h) = B(f) + T+ (f' =(f) + 1 =f+I=[f+1]
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Hence, f + I is in the image of ¢. O

Corollary 4.2.6 (Corollary 5.3 in [13l]). By using Grobner basis, it is possible to
decide whether R[z|/1 is integral over R or not. If R[x]/I is not integral over R,

then it is possible to find an i such that x; + I is not integral over R.

Proof. Let G be a Grobner basis for the ideal / and let G; = {g € G | lt(g) =
cx™ forsome ¢ € R, m > 0}. Let L; C R be the ideal generated by the leading

coefficients of elements of G;.

Claim 1: Lt(G;) = Lt(G) N R[z;| where G and G; are as above and Lt(G;) is

considered as an ideal in R|x;).

Proof of Claim 1:(C) : If a € Lt(G;), then a = . h;lt(g;) where h; € Rlz;], and
g; € G;, 50 g; € G. Hence, a € Lt(G), also a € R|x;], too.

(D) :If b € Lt(G) N Rlx], then b = 3, h;lt(g;) where g; € G, h; € R[z]. For
g; € Gilet hj = hj + h; where h; € R[] is the sum of the terms of h; involving
only the variable z;. Then
b= hilt(g;) + Y hilt(g;) + > hylt(gy).
9;¢Gs g9;€G; 9;€G;
Since each term in the first two sums contains variables other than z; and b € R|x;],
the first two sums add up to zero. Hence b = ) h;lt(g;) € Lt(G;). This proves

Claim 1.

9;€Gi

Claim 2: x; € \/Lt(I) if and only if L; = (1) where L; is as given above.

Proof of Claim 2: If x; € \/Lt(I), then 2 € Lt(I) N R|x;] for some M > 0.Hence,
a}' € Lt(G;) by Claim 1. Thus, " = 7 h;lt(g;) where h; € Rlz;] and g; € Gi.
Let t(g;) = ¢;x;”, 80 Ly = {c1,...,cx). Thus, 1 = Y. r;c; where r; = coefficient
ofxfw_mj in h;. Hence, 1 € (c¢;) which implies L; = (1). Conversely, if L, = (1),
then 37 cjrj = 1 where r; € R. Let N = maxz{m;}, then 2}Y 3" ¢;r; = a2}’ =
> cszn"rjzfvfmj =2 lt(gj)rjvafmj € Lt(G;) C Lt(I) which implies z; €

\/Lt(I). This proves the claim.

By Proposition R[x]/I is integral over R if and only if each x; is in /Lt([)

which is equivalent to L; = (1) in R. If [ is given, we can compute a Grobner basis
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G of I. Thus, we can compute GG; and L; for each 7. Then we can check whether
L; = (1) or not. Hence, this way, we can decide whether R[z|/ is integral over R or

not.

Now, if z; ¢ \/Lt(I) = \/Lt(G) (i.e. if L; # (1)), then x; + I is not integral over
R. Hence, the result follows. L]

Corollary 4.2.7 (Corollary 5.4 in [13]). If INR is zero-dimensional, then it is possible
to determine whether [ is zero-dimensional or not. If I is not zero-dimensional, then

it is possible to find an i such that I N R[z;] is not zero-dimensional.

Proof. By Lemma[d.2.4]if I N R is zero-dimensional, then I is zero-dimensional if
and only if R[x]/I is integral over R. By Proposition4.2.5| R[x]/I is integral over R
if and only if (x1,...,2,) € \/Lt(I). Hence, if x; ¢ \/Lt(I), then z; + I € R[z]|/I

is not integral over R, and thus [ is not zero-dimensional. Here, we can determine
whether z; is in /Lt(I) or not by using Grobner bases due to the Corollary
Hence, we can decide the zero-dimensionality of /. Now, if [ is not zero-dimensional,
then by Corollary we can find an ¢ such that z; 4+ [ is not integral over R. Thus,
x; + (I N R[x;]) € R[x;]/(I N R[z;]) is not integral over R and hence I N R[z;] is
not zero-dimensional by Lemma (If there exists a monic f(y;) € Rly| such
that f(x; + (I N R[z;])) = 0+ I N R[], then f(z;) € Rlx;], hence f(x; + I) =
f(z;) + 1 =0+ Iin R[z]/I, contradicting x; + I is not integral over R). O

Proposition 4.2.8 (Proposition 5.5 in [13]). Let I C R[z] be an ideal, let I N R
be primary and zero-dimensional. Let G be a Grobner basis for I. Then [ is zero-
dimensional if and only if for each i, there exists a g; € G such that lt(g;) = c;x;"

where ¢; € R is a unit modulo I N R.

Proof. For a given Grébner basis G of I, let us define G; = {g € G | lt(g) =
cxl forsome ¢ € R, m > 0}. Let L; C R be the ideal generated by the leading
coefficients of elements of GG;. Since the polynomial ring R[z] is over a commutative
ring R here, G can contain some constants. Thus, G N R C G;. Also, definition of
L; implies I N R C L;. Since GN R generates [ N Rand GNR C L;. fINR
is zero-dimensional and primary, then there exists a unique maximal ideal containing

I N R. This is so, because if we let I N R C M (every proper ideal is contained in a
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maximal ideal), then /I N R C v M = M (since maximal ideals are radical). Also,
since I N R is zero-dimensional, / "R C I N R C M implies M = +/I N R (since
I N Ris primary, v I N R is prime). Therefore, M = +/I N R is unique.

Claim: L; # (1) if and only if L; C /I N R where L; is as above.

Proof of Claim: If L; C VINR and L; = (1), then L; = R which contradicts
L; C \/m since v/I N R is a maximal ideal, hence a proper ideal. Conversely, if
we assume L; # (1), then there exists a maximal ideal, say M, such that I N R C
L; C M. By the part before this claim, we have M/ = v/I N R; hence, this proves the

claim.

Therefore, [ is zero-dimensional if and only if L; = (1) for all ¢, if and only if
L; ¢ VIN R if and only if there exists a g; € G; such that lc(g;) = ¢; ¢ VINR
where (c;, VI N R) = (1) since v/ N R is a maximal ideal. To prove that ¢; is a unit
modulo I N R, we have 1 = ¢;r + a where a € VINR, 7 € R. Thus,d” € INR.
Also, we have (¢;r + a)M = 1, too. Hence ¢; K + a™ = 1 after binomial expansion.
Since a® € IN R, a™ = 0 modulo I N R, thus we get ¢; is a unit modulo I N R.
This gives (1) = (¢;, I N R). O

Remark: Using the notation and assumptions as in Proposition [4.2.8] the elements of
I whose leading terms are divisible by x}"* are reducible modulo {g; } U(GNR) where
lt(g;) = c;x]". Thisis so, because (1) = (Ic(g;), INR) implies 1 = r-lc(g;)+h where
h € INR. Hence x;" =1 -lc(g;)x;" + hx!". If G is a minimal Grobner basis, then
by definition of minimal Grébner basis, all elements of GG; except for g; have degree
in z; that is less than m; (otherwise, if there is a ¢ # g; in G; such that deg(g) > m;,
then by the above argument, g is reducible modulo {¢;} U(G N R) C G — {g} which
contradicts minimality of GG). Therefore, using a minimal Grobner basis to determine
whether [ is zero-dimensional, it suffices to check that there exists only one element
of maximal degree in GG; and this element’s leading coefficient generates R together
with G N R. On the other hand, if [ is zero-dimensional and G is a minimal Grobner
basis of I, then g; can be identified as the unique element of G; with the maximum

degree and necessarily lc(g;) is a unit modulo I N R.

In what follows, we try to understand the nature of zero-dimensional primary ideals.
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Here, a polynomial satisfies a property modulo an ideal / in R means, that polyno-
mial’s image as a polynomial over R/ satisfies that property. We begin with the

following lemmas about polynomials in one variable.

Lemma 4.2.9 (Lemma 5.6 in [13]). Let I C R[z1] be an ideal such that [ N R is
zero-dimensional. Assume x7* € Lt(I) and x7""' ¢ Lt(I). Then every f € I with

deg(f) < m is a zero divisor or zero modulo I N R.

Proof. If L C R 1is the ideal generated by the leading coefficients of elements of /

whose degrees are less than m, then we have the following claim.
Claim: If f € I has degree less than m, then f = 0 modulo L, where L is as above.

Proof of Claim: Let f = cle_l + 029071”_2 + .-+ 4+ ¢,. Hence, either c; = 0 or
¢1 € L. By the assumption of the lemma, there exists a g € [ such that lt(g) = x7",
m—1

soletg = o +dya]" " +--- + d,,. If we also let f' = x;f — c;g, then we get the

following equalities.

f/ =x1f -y
= xl(cllﬂln_l + CQ:L‘T_Q + -+ Cm) — (19
=y’ + C2$71n_1 + -t epry — (o] + dlmrln_l + -+ dpy)
m—1 m—1

=] +ex!" + -+ epry — ) —adix]T — - —ady,

= (CQ — Cldl).flf?ln_l + (03 — cldg)xT_Q + -+ (Cm - cldm—l)xl — Cldm

Therefore, f' € I andif welet f' = 4 a" ' +chay >+ -+, thenc, = (ca—c1dy).
Since c1dy € L, we get ¢ = ¢y modL. We have ¢ € L, because ' € I and
deg(f') < m. Thus, co € L. By the same argument, we get ¢, € L, too. Hence, this
implies c3 € L since ¢, = c3 modL. Continuing this way results in ¢; € L for all i.

Therefore, f = 0 modL which proves the claim.

Now, if L = (1), then I contains a monic polynomial of degree less than m, since
if 1 = > rjc; where ¢; = lc(h;) and d; = deg(h;) < m, then for d = maz{d;}
we get h = erxcll_djhj which has leading term z¢, so deg(h) = d < m. This
contradicts the assumption that 2* € Lt(I) and #7"~' ¢ Lt(I). Hence, L is a proper
ideal of R. Let L C M where M is a maximal ideal of R. We also have I " R C L
by definition of L. We have I N R C L C M. Since I N R is zero-dimensional,
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I'NR = (Q; (primary decomposition of I N R) and \/Q; = M, where M, are
maximal ideals. I N R C M implies VI N R = N M; C VM = M, and M, Cc M
implies M; C M for some ¢ since M; are maximal, hence prime (if intersection of
prime ideals is a subset of another prime ideal P, then one of these prime ideals is a
subset of P). Since M; and M are both maximal ideals, M; C M gives M; = M.
Thus, we have I N R C L C M,. Since M; is an associated prime of / N R, we
have M; = (IN R : a) for some a ¢ I N R (see Proposition 7.17 in [10], pg.83) ,
then aM C I N R which implies a. C I N R, since L. C M. Hence, there exists an
a ¢ INRsothatal C I N R. Therefore, af = 0 mod(I N R) if deg(f) < m by the

help of the above claim. This shows f is a zero divisor or zero mod(I N R). O

Lemma 4.2.10 (Lemma 5.7 in [13]). Let I C R[z1] be a zero-dimensional ideal and
I N R be zero-dimensional, primary. Let G be a minimal Grobner basis for I and

let g1 € G be such that lt(g,) = c1x]"™ where ¢; € R is a unit mod(I N R) as in

Proposition In this case, /I = \/(g1, 1 N R).

Proof. For g, € G, if lt(g1) = c1x7™ and ¢; € R is a unit mod(I N R), then we have
z" € Lt(g1, INR) C Lt(I) since (1) = (g1, INR). Here, Lt(I) contains no smaller
power of x1, since GG is a minimal Grobner basis (otherwise if for m < my, we have
x7" is reducible modulo G — {¢; }, then this implies g¢; is reducible modulo G — {¢; },
contradicting the minimality of G). Therefore, by Lemma[4.2.9] every f € I whose

degree is less than m; is a zero divisor or zero modulo 7 N R.

Claim 1: If I N R is primary, then the set of zero divisors and zero mod(I N R) in R

isvINR.

Proof of Claim 1: Let a be a zero divisor modulo / N R in R, then ab = 0 mod(I N R)
for some b # 0 mod(I N R) in R. Thatis,ab € INRand b ¢ I N R. Since
I N R is primary, by definition of primary ideals, we get a € v/I N R. Conversely, if
a* € INR,buta* ! ¢ IN R, then aa®*~! = 0 mod(I N R) implies a is a zero divisor

or zero modulo 7 N R. This proves the claim.

If f € Iand deg(f) < my, then the proof of Lemmal4.2.9/implies a f = 0 mod(INR)
for some a € R, i.e. all coefficients of f are zero divisors or zero modulo / N R.

Hence, they are in v/ N R. Now, let ' € . So, by Proposition , we have F' =
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F' mod(g1, VI N R) where F’ is reduced mod(gy, VI N R). Moreover, deg(F') <
my, because 2" € Lt(gy, I N R). Therefore, F = 0 mod(~/I N R). Hence, F €
((g1, INR)+ (VTN R)R[x1]) = (91, VI N R). Therefore, I C (91,vVINR) C V1.
If we take the radicals, VI C \/ (g1, VINR) C \/ﬁ Since \/ﬁ — /I, we have

VI=1/(g1, VINR).
Claim 2: \/ (g1, VINR) = \/(g1, I N R).

Proof of Claim 2: Since VINR D INR, we have LHS O RHS. Conversely,
if f € \/(g1,VINR), then f* € (g;,vINR). Hence, f* = g1 f; + h where
fi € R[zy], h € VINR. Thus, h* € I N R for some s > 0. Taking s-th power of
both sides, we have (f*)* = (g1 f1 + h)°. Using binomial formula, we get (f*)* =
(g1 f1)* +s(gif1)* th+ -+ h® = g F + h* where g; F + h® € (g1, I N R). Hence,
f* € (g1, I N R) which implies f € \/(g1, 1 N R) and that proves the claim.

As aresult, we get v = 1/(g1,VINR) = /(91, I N R). ]

Now, it is possible for us to describe the zero-dimensional primary ideals by using

computable conditions on their Grobner bases.

Proposition 4.2.11 (Proposition 5.8 in [13]). Let I C Rlx| be a zero-dimensional
ideal, I N R be zero-dimensional and primary. Let G be a minimal Grobner basis
for I with respect to the lexicographical order such that v1 > xo > --- > x, and
let g1,...,gn € G so that lt(g;) = c;x;" where ¢; € R is a unit mod(I N R) for
all i € {1,...,n} (note that such g; exists by Proposition . In this case, 1
is primary if and only if for all i, g; is a power of an irreducible polynomial modulo
VINR[Ti1,. .. 2, Ifthis is the case, then for every h € GNR[z;, ..., x,)— {0},
h=0mod(\/INR[xis1,...,T])

Proof. We use induction on the number of variables n. Let n = 0,then / N R = [ is
zero-dimensional and primary by assumption. Now, assume that the statement holds
for n— 1 variables. For the ideal I C R[x1,xs, ..., z,] satisfying the conditions of the
statement, let R’ = R[zo,...,x,|, I’ = I N R'. Then we can show that the conditions
of the statement hold for the ideal I’ C R[xs,...,2z,] and ¢3,...,9, € G =GN R
(which is a minimal Grobner basis of I”) as follows. Wehave ' " R=INR NR =

46



IN R is zero-dimensional and primary. Also, we need to show [’ is zero-dimensional.
Claim 1: I is zero-dimensional implies [ N R’ = I’ is zero-dimensional.

Proof of Claim 1: Let I be zero-dimensional. Let GG be a Grobner basis for [ in the
lexicographical order z; > - - > x,,. So, by Proposition4.2.8] for each 7, there exists
a g; € G such that lt(g;) = ¢;x]" where ¢; is a unit mod(I N R). Since G' = G N R’
is a minimal Grobner basis of I’ = I N R, foreachi € {2,...,n}, 9, € GN R,
lt(g;) = c;x" where ¢; is aunit mod(I'NR) (since I'NR = INR) implies INR' = I’

is zero-dimensional by Proposition 4.2.8|and this proves the claim.

As a result, the statement holds for the ideal I’ in the polynomial ring R’ with n — 1
variables. Therefore, it suffices to prove that [ is primary if and only if I’ is primary
and ¢ is a power of an irreducible polynomial modulo v/I’. To complete the proof,
we also need to show that, in this case, for every h € G — {g:}, h = 0 mod(v/T").

(If I is primary then [’ is primary by Claim 2 below and since the statement holds

for I', g; is a power of an irreducible polynomial mod(v/I N R[z;1,...,x,]) for
i € {2,...,n}. Hence, it remains to show that this holds for i = 1. For the converse,

if I’ is primary, and g is a power of an irreducible modulo v/I’, then each g; is a

power of an irreducible modulo /I N R[x;i1, ..., x,) fori € {1,...,n}.)
Claim 2: I is primary implies I' is primary.

Proof of Claim 2: Let I be primary, and assume ab € I’ = I N R’ for some a,b € R,
then ab € I, thus a € I or b* € I for some k > 0 (since [ is primary). Also, we have
a,b € R’ which impliesa € I N R orb* € I N R'. Hence, I' = I N R’ is primary

proving the claim.

Now, assume /" = INR' is primary. Let lt(g1) = c12]". If h € GNR[x1]—{¢1}, then
deg(h) < my in . Otherwise, h would be reducible mod(g;, G N R) by the remark
after Proposition 4.2.8| and this contradicts the minimality of G. Thus, by proof of
Lemma and its notation, there exists an a &€ I N R such that al, C I N R/,
Hence, ah = 0 mod(I’), i.e. ac; € I' where ¢;’s are coefficients of h. Since I’ is
primary and a ¢ I’, then ¢} € I'. Thus, ¢; € VT, ie. h = 0mod(\/T'). This proves
the second part of the proposition.(The condition holds for g; where i € {2,...,n},

since by induction the statement holds for I’ and [’ is primary.)
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Claim 3: Let I be zero-dimensional. Then I is primary if and only if \/I is prime.

Proof of Claim 3: Let I be primary, and let ab € /T for a,b € R[z, ..., x,]. Thus,
(ab)* € I for some k > 0. Hence, (ab)* = a*b* € I. Since I is primary, a* € I
or (b¥)t € I for some t > 0. This implies a € v/T or b € v/I. Conversely, let \/T
be prime, let I be zero-dimensional. So, let I = ();_, @); be an irredundant primary
decomposition of I. Hence, VI = N;_, VQi where V1 is prime. Since I is zero-
dimensional, /Q); is maximal. Now, if P = ﬂle P; where P and P; are prime ideals,
then P = P, for some i. (See, Proposition 1.11 in [10], pg.8). Since maximal ideals
are prime, we have /I = \/Q_] for some j. Let \/Q); = M; where M; is maximal.
Thus, VIi=M ; for some j. Therefore, M; C M, for ¢« # j. However, since M;’s are
maximal, this implies M; = M; for all 4, j. Hence, there is only one maximal ideal
which implies there is only one associated prime. Therefore, I = (); where @), is

primary. This proves the claim.

By Lemma [4.2.10|and its proof, we have VI = /(¢1,1') = 1/ (91, VI'). Thus, we

can use Claim 3, since [ is given to be zero-dimensional. We have [ is primary if
and only if \/T is prime if and only if \/ (g1, v/I') is prime if and only if (g;,V/I") is
primary (since v/I = 1/ (g1, v/I’) and I is zero-dimensional, we get J = (g1, /') is

also zero-dimensional and we apply Claim 3 for the ideal .J).

Claim 4: (g1,\/T') is primary if and only if the ideal generated by g, in (R’ //T')[z1]

is primary.

Proof of Claim 4: Let ¢ : R'[x1] — (R'/v/T')[z1] be the canonical homomorphism.
Since ¢ is an epimorphism and ker ¢ = (v/I')R'[x1] C (g1, VT'), by using the defi-
nition of being primary, we can easily show that ¢((g1, V1)) = (¢(g1)) is primary if
and only if (g, +/I’) is primary. This proves the claim.

Using the above claims, we complete the proof as follows. What remains to be shown
is that [ is primary if and only if I’ is primary and g; is a power of an irreducible
polynomial modulo v/I’. Assume first that I is primary. Then by Claim 2, I’ is
primary. Since I’ is zero-dimensional (by Claim 1) and primary, /I’ is prime by
Claim 3. Indeed, v/’ is maximal since I’ is zero-dimensional. Hence, R’ / VTis a

field. Therefore, (R’'//I')[z1] is a PID. By Claim 4 and its preceding paragraph, we
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have I is primary if and only if (g1, v/I’) is primary if and only if the ideal generated
by g1 in (R'/v/I')[2] is primary. Since (R'/\/I")[x1] is a PID, the ideal generated by
g1 in (R'/+/T')[x4] is primary if and only if it is a power of an irreducible polynomial

in (R'//T')[x4].

Conversely, assume that [’ is primary and ¢; is a power of an irreducible polyno-
mial modulo /7', i.e., g; is a power of an irreducible polynomial in (R'/v/I')[z1].
Since v/I’ is maximal (I’ is one dimensional by Claim 1 and primary by assumption),
R'/\/T is a field, hence (R'/+/T')[x1] is a PID. Following the equivalent statements

in the above paragraph, we can conclude that [ is primary. [

4.3 Zero-dimensional Primary Decomposition

Throughout this section, we assume that we can factor polynomials in one variable
over finitely generated algebraic extensions of R/M where M C R is any maximal
ideal. We will give an algorithm to compute the irredundant primary decomposition
of zero-dimensional ideals in R[x]. First, we write [ as () [; where I; N R[z,] is M;-
primary while / N R is M -primary. We then iterate the algorithm for each /; and by
induction on the number of variables, in the end, we reach a primary decomposition

of I.
The following proposition yields the induction step.

Proposition 4.3.1 (Proposition 6.1 in [13]]). Let I C R[x] be a zero-dimensional ideal
and let I N R be an M -primary ideal where M C R is a maximal ideal. Then one
can construct zero-dimensional ideals I, . . ., I, C R[z| and distinct maximal ideals

M, ..., M,, C Rlz,] suchthat I =, I; and I; N R[x,| is M;-primary.
Proof. If we let I¢ = I N R[z,,], then to apply Lemma 4.2.10} we need a claim.

Claim 1: I°N R = I N R is zero-dimensional and primary.

Proof of Claim 1: Firstof all, [N R = I N R[x,] N R = I N R and we are given
I N R as M-primary, hence I N R = M where M is a maximal ideal. Every prime
ideal containing / N R is maximal. This is because if we let / N R C P where I N R
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is primary and P is prime, then v/ N R C /P = P. However, v/I N R is maximal,
so M =+ 1N R = P. This implies I N R is zero-dimensional and proves the claim.

Since [ is zero-dimensional and /N R is zero-dimensional and primary, by Proposition
4.2 8| there exists a g,, € I such that, lt(g,) = cnx’ff where c¢,, is a unit modulo I N R.
Since x,, is the smallest variable in the lex order we use, we get g, € I N R[z,], hence
by Proposition again, /° = I N R[x,] is zero-dimensional. Then by Lemma
4.2.10|and its proof, for g = g,,, we have V¢ = \/(g, I N R) = 1/(9,VI*N R) =

(9, M).

At the beginning of this section, we assumed that we can factorize univariate poly-
nomials, so we let g(z,,) = [[,(pi(x,))* be the irreducible factorization of g(z,)
mod(M), i.e. factorization in (R/M)[x,], hence the coefficients of p;(z,)’s are in
R/M. Although these coefficients are in R/M, we can see p;(z,,) in R[z,]| by choos-
ing a representative for each coefficient. The images of p;(z,) in (R/M)[z,] are
irreducible polynomials in a PID (since R/M is a field), hence they are pairwise

comaximal non-units.
Claim 2: [],(pi(zn))* € (9, M) C VI

Proof of Claim 2: In (R/M)[x,|, we have [[.(pi(z,))* = g(z,). This implies,
[L(pi(zn))* = g(xn) € M R[x,]. Therefore, [, (pi(xn))* € (g, M) where (g, M) C
\/(g, M), and since /(g, M) = v/I¢, we prove the claim.

Hence, ([ [.(pi(z,))®)® € I° for some s > 0.
Claim 3: I contains a power of M.

Proof of Claim 3: Since R is Noetherian, M = /I N R has a finite basis. Let
M = (hy,...,h). So, k¥ € INRforalli € {1,...,s}. Each element of M is
expressed as Y ., a;h;, hence (3, azh) TR € TN R. Let K = max{k;}.
Thus, M5 s c INR C I. If welet Ks = t, then M* C I which proves the claim.

Claim 4: If p;(z,) and p;(z,,) are comaximal mod(M) for i # j, and I contains a

power of M, then p;(x,) and p;(x,) are comaximal mod(I).

Proof of Claim 4: If p;(x,),pj(x,) € R[z,] are comaximal mod(M ), then one of
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their linear combinations in (R/M)|[z,] is 1, i.e. (p;) + (p;) = (R/M)[x,]. Thus,
ap; + bp; = 1in (R/M)[z,] where a,b € R[z,]. So, ap; + bp; — 1 € MR|z,].
Let ap; + bp; — 1 = F € MR[z,]. We have M* C I N R for some k& > 0 by
Claim 3. Therefore, F'V has coefficients in I N R for some N > 0. Hence, FV € I.
Thus, (ap; + bp; — 1)N € I which implies (ap; + bp; — 1)V = 0in R[z,]/I. If we
write this binomial expansion explicitly, we get cp; + dp; + (—1)Y = 0in R[z]/I for
some ¢, d € R[x,]. This implies p; and p; are comaximal in R[x]/I, hence proves the

claim.
Claim 5: (,(pi**, 1) = (I, p;**, 1) = 1.

Proof of Claim 5: Since p;" are pairwise comaximal in R[z]/I by Claim 4, we can
conclude p;** are also pairwise comaximal in R[z]/I. Hence, by Chinese Remain-
der Theorem, (\(p;**) = ([ p;*®) in R[x]/I (see [S], pg.131). Thus, N(p;**,I) =
(I1p*®,I) = I in R[z] since ([ pi*)® € I¢ C 1. This proves the claim.

Let I; = (p;**, I) and M; = (p;, M) R[x,]. Therefore, by Claim 5 we get () [; = I.
Claim 6: M; = (p;, M) R|x,] is maximal in R[x,].

Proof of Claim 6: We have the isomorphism:

Rla,] o Rleal/(MR[z,])

M; — M;/(MR[z,])

Also, Rl] o E[xn} and (pi, M) B[z,

MR[z,] M MR|x,]
M is maximal , R/M is a field, and since p; is irreducible in (R/M)[z,,],

=~ (p;) C (R/M)]z,]. Moreover, since
(R/M)]z]

is a field. Thus, M, is a maximal ideal in R[xz,]. This finishes the proof of the claim.
Claim 7: I; N R[z,] = (pi**, I) N R[z,) contains a power of M; = (p;, M) R|[x,)].

Proof of Claim 7: We have p;*® € I;, p; € R[z,), M; C R[z,| and since M =
VINR,weget M* C INR C I; N R[x,], for some ¢ > 0 (by Claim 3). Hence, a
suitable power of M;, say M;**™" is in I; N R[z,] which completes the proof of the

claim.

Claim 8: If I; N R[x,] contains a power of M;, then I; N R|x,] is either M;-primary

or the unit ideal in R[x,].
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Proof of Claim 8: If M} C I; N R[x,] for some ¢ > 0, then \/M} C /I, N R[x,).
Since M, is maximal, we can show that \/ﬁf = M,;. Hence, M; C \/I; N R[z,).
Since M; is maximal, either M; = +/I; N R[z,] or /T, N R[z,] = R[z,]. In the
latter case [; N R[z,] = R[z,). In the former case, we can conclude that I; N R[x,,]
is M;-primary. (Since I N R[z,] is zero-dimensional and I N R[x,] C I; N R[z,],
we get I; N R[x,] is either zero-dimensional or the unit ideal in R[z,|. If [; N R[x,,]
is zero-dimensional, then \/I; N R[z,] = (| K; where K are the associated primes
which are all maximal. Then, \/m = M, = () K, implies there exists only
one K; and M; = K, hence I; N R|x,] is M;-primary since there is one associated

prime, hence one primary component.) This proves the claim.
Claim 9: I; N R[x,] # Rz,

Proof of Claim 9: Since I; = (p;**, I), if ¢ € I;, then ¢ = ap;"* + b where a € R|z],
b € I. Thus, (T[,;p;" ) C I since ([T p; ) (ap;™ +b) € I as [[,pi*" €
I. Assume I; N R[z,] = (1), then (I]_;p;") -1 = [[,; ;" € I. Since p; €
Rz, for all j, [T,.;p;" € I N R[z,] = I° C VI¢ = \/(g, M) which implies
[1.;pi € (9, M). Hence, [[,.;p; = gh + m for some h € R[x,], m € MR|z,].
Modulo M (in (R/M)[x,]), we get [],.; p; = (I1p;*) - h which contradicts that p;
is an irreducible, non-unit in the PID (R/M)[z,] (considering unique factorization in

(R/M)[x,]). Therefore, I; # (1) which proves the claim.

As a result of Claim 8 and 9, I; N R[xz,] is M;-primary. We have already shown that
I = () I; which completes the proof. 0

If we use the above proposition recursively for M; and I; over R[z,], then we can

obtain the complete primary decomposition of the ideal [ and its associated primes.

Algorithm 4.3.2. ZPD (R; x; M). Zero-dimensional ideals’ primary decomposition
Input: Ring R; variables = z1, ..., z, ;ideal I C R[x];ideal M C R.
Assumptions: M is maximal, [ is zero-dimensional, / N R is M -primary.

Output: {(Q1, M), ..., (Qm, M)} where Q; and M; are ideals in R|x] such that
M; is maximal, M; # M; for ¢ # j, Q; is M;-primary, and I = (), Q); (irredundant

primary decomposition of I).
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Step 1: If n = 0 then return {(/, M)}. (Here, if n = 0, then I N R = I. I is zero-
dimensional and /I = M by assumption. So, I is M-primary and its decomposition

is itself.)

Step 2: Compute a minimal Grobner basis G for I N R|x,,] (by using Proposition
(i1).) (For an ideal /, we can compute a Grobner basis G and make it minimal. Then

by Proposition (i), G N R[z,] is a minimal Grobner basis, say G, for I N R[z,].)

Step 3: Select g € G of largest degree. (Since GG is minimal, I is zero-dimensional
and I N R is zero-dimensional primary, there exists a unique such g by the remark

after Proposition [4.2.§).

Step 4: Compute the irreducible factorization of g mod(M) where g = [],p* in
(R/M)[z,], and p; € R[z,]. (We can compute this factorization by the assumption
preceding Proposition[4.3.1] Afterwards, we can choose one representative from each

coset of R/M, thus we can write p; € R[z,)).

Step 5: Find an integer s > 0 such that ([ [, p;*)® € I N R[z,]. Af we let f =[], pi",
then for consecutive values of s, we can compute f° and we can determine whether

f* € I N R[z,] by ideal membership algorithm. Note that such an s exists by the
proof of Proposition {.3.1).

Step 6: Let I; = (p;”*, 1), M; = (p;, M)R[z,,] (by Proposition #.3.1 I = (; and
I; N R[x,] is M;-primary).

Step 7: Return | J, ZPD(R[xy]; z1,...,2n-1; 1;, M;)

The algorithm is recursively defined. At Step 6 we get I = (I; and I; N R|x,,]
is M;-primary by Proposition Each [; is zero-dimensional since [ is zero-
dimensional, I C [; and I; # R[z] (1 € I; since I; N R[z,] # Rz, as I; N R[x,] is
primary in R[z,)). I; is zero-dimensional, ;N\ R[x,] is M;-primary and M; is maximal
in R[z,], hence the assumptions of the algorithm hold for I; C (R[z,])[z1, ..., Tn_1]
considering R|x,] as the coefficient ring and x4, ..., x,_; as variables. Therefore,
in Step 7, we can apply the algorithm to /; and M; where this time, the number of
variables is n — 1. At each stage of the algorithm (at each iteration) the number of

variables drops by 1, and the algorithm terminates when the number of variables is 0.
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By induction on n (number of variables) we can prove that this algorithm gives an
irredundant primary decomposition of I as follows. If n = 0,then I = I N Ris M-
primary, thus I = I is an irredundant primary decomposition of /. We can also see
thatif n = 1, at Step 6, I = () I, is a primary decomposition of I (here, I C R[z;] and
I; N R[z4] = I; is M;-primary in R|x;]), and it is irredundant since M; are distinct by
proof of Proposition [4.3.1] This argument shows that the algorithm works for n = 0

and n = 1. Assume now, the algorithm works for n — 1 variables.

For I C R[zy,...,x,] satisfying the assumptions of the algorithm, at Step 6, we get
I =1L I C (R[z,))[z1,...,2,_1] considering R[x,] as the coefficient ring, and
x1,...,T,_1 as variables, as explained above, we can apply the algorithm to /; and
M;. Since there are n — 1 variables, by inductive hypothesis, the algorithm returns
L =N ; Qi; (an irredundant primary decomposition of I;) and M,; = /@Q;; where
Qij is M;;-primary. Then we get, I = (), [; = (),((; Qi) = (;; Qi; which gives

primary decomposition of /.

To show irredundancy, we need to prove M, ;, # M,,;, whenever (i1, j1) # (i2, j2)-
By the induction hypothesis on n — 1 variables, we have M;;, # M,j, if j; # jo since
I; = ﬂ ()i; is an irredundant primary decomposition of I; by assumption. Since
I; N R[z,] is M;-primary, \/m M; C Rlzy,]. Thus, M; is equal to the

following:

Vi men:\/ﬁQw )N Rz, = \/ﬂQwﬂRxn =)/ @i N Rlzn).
J

Therefore, M; C \/Qy; N R[x,] and since Q;; N R[x,] # Rlz,) (1 & Qi as Qy; is
primary) we can conclude M; = /Q;; N R[z,] using M; is maximal in R[z,]. We
have M; = \/Qij N R[z,] = \/Qi; N Rlz,] = M;; N R[z,). Assume M;,j, = M,,;,
for iy # iy, then M;, = M, ;, N R[x,] = M,,;, N R[x,] = M,, which contradicts
M;, # M;, (M; are distinct by proof of Proposition #.3.1). Therefore, M; ;, #
M;,;, whenever i1 # iy. This completes the proof of irredundancy for the primary
decomposition [ = ﬂl ; Qij. Hence, the algorithm works for n variables completing

the proof by induction.

To clarify the procedure in this algorithm, we look at a few initial stages more ex-

plicitly. At the first stage, I C R[zy,...,x,], I N R is M-primary, [ is zero-
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dimensional. At the end of this stage, we get I = () 1;, I; N R[z,] is M;-primary
where M; C R[z,]| is maximal. In stage two, we apply the algorithm to each pair
(I;, M;) where I; C (R[z,))[z1,...,2z,—1] (the coefficient ring is R[x,] and there
are n — 1 variables xy,...,x,_1). At the end of stage two, we get [; = ﬂj I;j
and [;; N R[z,_1,%,] is M,;-primary where M;; C R|x,_1,z,] is maximal. So,
I=N,1 = ﬂz ; 1ij- Similarly, at stage three, we apply the algorithm to each pair
(L;j, M;j) where I;; C (R[x,—1,x,))[T1, . . ., Tn_2] (the coefficient ring is R[z,,_1, x,]
and there are n — 2 variables x1,...,x,_». At the end of stage three, we get [;; =
i Liji and L, N R[2,—2, Tp_1, T,) i M- primary where M, is a maximal ideal

in R[(L’n_g, Tn—1, .Z‘n]. We obtain I = ni,j [ij = ﬂi,j,k ]”ij

Continuing this way, at the end of k — th stage, we get [ = ﬂZ”QZk Li i,..i, Where
Ly i, N R[Tp—gt1,- .., 2] 18 My, 4 -primary where M,,;, ; is a maximal ideal in
R[$n7k+1, PN ,xn].

The algorithm stops at the end of the n—th stage where we obtain I = [ i Livig. i,
where [;, ;. N R[xy,...,x,) = I; 4, is M;, ;. primary where M;, ; is a maximal
ideal in R[z1, ..., z,) = R[z], therefore we reach an irredundant primary decompo-
sition of 1.

Remark: At the end of the algorithm, we obtain the irredundant primary decompo-
sition, hence I = [ I, where I, is M, primary and M, is maximal in R[x]. We can
compute /T as /I = m =N VI, = (N M; since \/I; = M;. The algorithm
explicitly computes the maximal ideals M;, hence we can explicitly compute /T as
N 7.

4.4 Primary Decomposition in Polynomial Rings over Principal Ideal Domains

In this section, we investigate the problem of primary decomposition where the coef-

ficient ring is a PID.

Lemma 4.4.1 (Lemma 8.1 in [13l]). Let S be a multiplicatively closed subset of R
and let s € S.

If (ST'HNRC(I:s) then I =(I:5)N(I,s).
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Proof. I C (I : s) since if ¢ € I then is € I, by definition of an ideal. Also,
I C (I, s) since [ is in the generator set of (1, s). Conversely, leta € (I : s) N (1, s).
So, since a € (I,s),a =1+ ks where k € R, i € I. Also, we have a € (I : s), thus
as = is + ks> € I. Here, is € I, as € I implies ks?> € I. Thus, k = k:_s; e S~I.
Together with k € R, this implies k € (S™'I) N R C (I : s) by assumsption of the
lemma. Then, ks € I which implies a =i + ks € I. O]

If we use this lemma and Proposition[3.2.11] then we reach the next proposition which

serves as the key of the decomposition process.

Proposition 4.4.2 (Proposition 8.2 in [13]). Let R be an integral domain, (p) C R
be a principal prime ideal. For any given ideal I C R|[z|, it is possible to find an
element r € R — (p) such that

I'=(,rynI*

where 1°° = I R, [x] N R[z].

Proof. We can find an element s € R — (p) so that [°° = IR [x] N R[z] = I R, [x] N
R[z] by using Proposition Also, we can find a generating set (a Grobner
basis) of ¢, i.e., we can compute [°“ by Corollary Let G = {g1,..., G}
be a Grobner basis for 1°¢ = I Ri[z] N R[z]|. So, g; = hafi + -+ + hifr Where
I = (fi,..., fx) and h;; € R,[x] foralli € {1,...,t},j € {1,...,k} and for
some k € N. Here, each h;; has a denominator s*4. Let m; = max;{c;;}. Then,
s™ih;; € R[x] and hence, s™g; € I. If we let m = max{m,}, then we have s™g; €
I, foralli € {1,...,t}. Since g;’s are the basis elements for /¢, we have s™[° C I,
ie, I C (I : s™). Here, we can compute m; for each g; by checking whether
s™ig; € I or not by using ideal membership algorithm and substituting m; = 1,2, . ..
. Surely, we can compute m = maxz{m;} then. Since for S = R — (p), we have
ST N R[z] = IRy)lx] N Rlz] = I*“and I*° C (I : s™) from above, we obtain
ST N R[z] C (I : s™) where s™ € S since s € S. Therefore, by Lemmald.4.1] we
have I = (I : ™) N (I, s™). Thus, since I** C (I : s™)and I C I°,

Ircren(I,s™yc({:s"n(,s") =1.
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Therefore, 1°“ N (I,s™) = (I : s™) N (I,s™) = I. Taking s™ = r finishes the
proof. ]

Following is the central proposition of this section.

Proposition 4.4.3 (Proposition 8.3 in [13])). Let R be a PID, I be an ideal in R|z],
(p) C R be a maximal ideal. If I N R is (p)-primary, then it is possible to compute a

primary decomposition for I.

Proof. Let us note that if I N R is (p)-primary and (p) is a maximal ideal, then / N R

is zero-dimensional.

Suppose [ is zero-dimensional, then we can find a decomposition by zero-dimensional
primary decomposition algorithm, i.e., ZPD which was introduced after Proposition
Now, suppose [ is not zero-dimensional, then by Corollary we can find
an ¢ such that I N R[xz;] = I N R’ is not zero-dimensional where R’ = R[z;].
Let ' = x1,...,2;1,Tiz1,...,2T, (2’ is equal to the whole sequence of variables

X1, %2, 3, ...). Thus, R'[z'] = R[z] and I N R’ is not zero-dimensional.

By Proposition|4.4.2} we can find an element 7’ € R'—(p) R’ such that I = (I,r")NI*
where I = I'R(, [2'] N R'[2']. Therefore, it is enough to decompose (I, r’) and [

separately.

Claim 1: Since (I,7") N R’ contains both the (p)-primary ideal I N R and the element

r" ¢ (p)R', we can conclude (I,r") N R’ is either zero-dimensional or the unit ideal

R

Proof of Claim 1: We need to clarify a possible misconception here: Since (/,7")N R’
is an ideal in R’ and I N R is an ideal in R, we can not conclude directly that “If

(INR) C (I,7)NR and IN R is (p)-primary then (I,7’) N R’ is zero-dimensional.”

Now, let J = (I,7') N R'. Assume that J is not the unit ideal. So, .J is contained in at
least one maximal (hence prime) ideal. Let there be a chain of prime ideals containing
J as follows: (INR)CJC @ C---CQ; C R where J contains I N R as a set.
We are given that (I N R) is (p)-primary. Thus, v/I N R = (p) implying p* € TN R
for some k > 0. Thus, p* € J and p* € @i, hence p € Q; since Q) is prime.
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Therefore, (p) R C @;. If we look at the quotient ideals, then we have:

Q1 Q2 @ R
WE = OF =S DR - OR

/

/
Note that if @); is prime in R/, then (;)2# is prime in %. Now, since p € R,

R Rlz] _ R

WE - DR w"

Moreover, since (p) is maximal in R, R/(p) is a field. Then,

/

R
(0) R
Prime ideals in a PID are either (0) which is one dimensional, or («) which is zero-

Q1

dimensional, where « is an irreducible element. So, if —— = (0) then @; =

(PR
p)R'. However, r’ p)R and ' € @, since v’ € J C Q. Therefore, Ql,
(PR

T;%, is zero-dimensional. Thus, the chain of prime ideals contain-
p

ing J = (I, r') N R in R’ can have at most one prime ideal ;. Therefore, J is

@1 Q2
WE & R

is a PID.

# (0). Hence,

zero-dimensional. (If ;1 € @) then ). This proves the claim.

Here, we can check whether 1 € J by using Grébner Basis and ideal membership

algorithm. If 1 ¢ J ,ie. J # R, then J is zero-dimensional.

If (1,7 )N R[x;] is zero-dimensional for (I,7"), then the number of z;’s where (1,7 )N
R|xy] is not zero-dimensional is at least one less than the number of variables where
I N R[xy] is not zero-dimensional. Then we start the Algorithm from (I,7")
instead of I and obtain a primary decomposition of (I, ) by induction on the number
of variables such that I N R[xy] is not zero-dimensional. For this purpose, we need
to check whether (I,7') N R is (p)-primary: Since IN R C (I,7”)NR,INR
is zero-dimensional and (/,7") N R # (1) (because (/,r') N R’ is zero-dimensional
which means 1 ¢ (I,7’)). We can conclude (/,7’) N R is zero-dimensional. Since
I N Ris (p)-primary and (p) is maximal, (p) = VIN R C +/(I,7) N R # (1) gives
(p) = v/ (I,7") N R. Therefore, (I,7')N R is (p)-primary since it is zero-dimensional.

If on the other hand, (I,7')NR" = R, then (I,r") = R[x]since 1 € (I, 7). Therefore,

I = (I,7") N I° = I°. In this case, we need to decompose 1.
Decomposing * is equivalent to decomposing [ = I I?{,[+'] and finding its contrac-
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tion to R'[x'] by Proposition We have [*¢ = [N R'[2'], let I* = N, Q; be
a primary decomposition of 7¢. Thus, I°* = (|, Q;) N R[] = N, (Q:N R'[x]).
Let (Q; N R'[z]) = @; Let us check whether @ is primary. Let ab € @: for
a,b € R'[z']. Hence, ab € Q; which implies a € Q; or b* € Q; for some k > 0 since
Q; is primary. We also have a,b € R'[z']. Soa € @ or b* ¢ @ which implies @ is

primary.
Claim 2: R'(p) is a PID.

Proof of Claim 2: If S = R[z;]— (p) R[x;] then Rzp) = (R[x])p) = S7'R’. Thereis a
one-to-one correspondence between the proper ideals of R[x;] which do not intersect
with S and the proper ideals of S~'R[z;] which can be depicted as [ <— S~ 'I
where S NI = @. We know that if R is a PID then R is Noetherian, thus R[z;] is
Noetherian by Hilbert’s Basis theorem. Let us take an ideal J in S™'R[z;] = R/(p).
Hence, J = S!I for some ideal I C R[z;] where I NS = &. Since R[x;] is
Noetherian, [ = (fy,..., fs)in Rlx;]. J = S7'1 = (f1,... ,fs>R'(p). Elements of S
are units in ST'R’ = R'(p). We have S as the set of polynomials in R[z;] which are

not divisible by p since S = R[z;] — (p) R[z;].

Now, since R is a PID, R is a UFD and hence R[z;] is a UFD. Therefore, if p is
irreducible in R, then p is irreducible in R[z;]. Since R[z,] is a UFD, f; = p®.f;
where o; > 0, fz are units in S~ R[x;], and p ¢ ﬁ In fact, o; > 1since INS =
@. Hence, all elements of [ are divisible by p: J = S7 = (fi,.. .,fs>R'(p) =
(P f1,p° fo, . .. ,pans)R/(p) = (p™,... ,pa5>R'(p) since f; is unit in R'(p). Thus,
J=85"1= (pa>R/(p) where o = min;{«;}. Therefore, .J is a principal ideal which

implies that R/( is a PID. This completes the proof of the claim.

)

Note that for any ideal I = {q1,---,qs) C R and units uy,...,u; € R we have
I= <Q17"'7QS> = <Q1u17---aqsu5> in é

Claim 3: (p)R;p) is the unique maximal ideal of R/(p).

Proof of Claim 3: By the proof of Claim 2, all proper ideals of Rzp) are given by

(p*) Ry, for & > 1. Then, v = 1 gives the unique maximal ideal.

Claim 4: 1° N R;p) is (p)R;p)-primary.
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Proof of Claim 4: We are given that I N R is (p)-primary. Hence, (p) = VINR
which implies p* € I N R. Thus, p* € I, so p* € IR'(p) [']. We have ]R/(p) (2] =
I¢, thus p* € I°. Hence, p* € I°N R'(p). Therefore, p € ,/I¢N R'(p) implying

D - €N . Now, we need to show x| N C(p since this wi
R, I*NR,. N d to show IR'[z'] N R’ R’ since this will
imply IR, [2'| N R}, C (p) R,

Let P be a non zero-dimensional associated prime of / N R’. (Note that [ N R’ is
not zero-dimensional, thus such a P exists). Hence, I N R’ = (;_, Q; where Q;
are primary, which implies VI N R’ = Ni—; VQ:. Let, without loss of generality,
V/Q1 = P where P is not zero-dimensional. Thus, (p)R’ C P since (as we have

shown above) (p)R' C VINR C P (as(),_, VQ:; C P).

(p) R’ is one dimensional in R’ since R'/((p)R’) is a PID which is not a field as shown
above, hence has Krull dimension 1. We have dimP > 1 and dim(p)R' = 1. Also,
P D (p)R' implies dimP < dim(p)R' = 1. Therefore, dimP = 1. We have
(p) R’ C P and both are one dimensional and prime, hence P = (p)R’. Furthermore,
INR C (p)R sinceINR' CVINR CP=(p)R.

This shows I N R' = [ R'[x ’] N R C (p)R' which implies IR, [Z'|N R, C (p)RY,
which then implies \/ IR, N R, < \/ (p) R, since (p) R/, is max-

imal. Thus, \/I°N R, = (p)R’(p) since we have shown (p)R(, € ,/I°N R,

before. Therefore, ¢ N Rzp) is (p)R’(p)-primary (since (p)R’(p) is maximal). This

completes the proof of the claim.

Let us collect all these four claims towards a proof. If [ is zero-dimensional, we
apply the ZPD algorithm introduced before. Otherwise, we find ' € R — (p)R’
such that / = (I,7") N I*“ and we need to decompose (/,7’) and /¢ separately.
By Claim 1, (I,7") N R’ is zero-dimensional or the unit ideal in R'. If (I,7") N R’
is zero-dimensional, then we can compute the primary decomposition of (/,7’) by
induction on the number of x;’s where the contraction of the ideal to R|xy] is not
zero-dimensional. Else if (1, ") N R’ is the unit ideal, then / = /°“ and we decompose

1¢¢ only.

To decompose /¢, we need to decompose [¢ = [ R’(p) [2'] and then contract the de-

composition back to R'[z] by Proposition [3.2.11, By Claim 2, R, is a PID and
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by Claim 3, (p) R, is the unique maximal ideal of R,. By Claim 4, I° N R, is
(p)R{,-primary. Thus, I° C R [z'] satisfies the conditions of Proposition W
Then, we can apply the algorithm to /¢ in R’(p) ['] which has n — 1 variables and we
can obtain the primary decomposition of /¢ by induction on n, where n is the number
of variables in the polynomial ring. Note that for the base step of induction, if n = 0
then / C R is an ideal in PID R such that I N R = [ is (p)-primary in R, so [ is

already primary.

Note that, in the proof we used two induction arguments. In each recursive iteration
of the algorithm, either the number of the variables in the polynomial ring drops
by 1 or the number of variables x; such that the contraction of the ideal to R[xy]
is not zero-dimensional drops by 1. If the number of variables becomes zero, the
algorithm terminates as explained in the above paragraph and if there is no variable
xy such that the contraction of the ideal to R[zj] is not zero-dimensional, then the
ideal is itself zero-dimensional, hence we terminate the algorithm by applying the

ZPD algorithm. [

Corollary 4.4.4 (Corollary 8.4 in [13]]). If K is a field, then it is possible to compute

the primary decomposition of any proper ideal in K|z).

Proof. First of all, if K is a field, then K is a PID. I N K # (1) since [ is a proper
ideal of K[x]. Hence, INK = (0) since the only proper ideal of a field is (0). Then by
taking p = 0 and R = K in Proposition4.4.3|we can obtain a primary decomposition
of I. (Note that (0) is a maximal ideal in i and I N K = /TN K = (0) implies
I'N K is (0)-primary). O

Following the arguments in the proof of Proposition[4.4.3] we obtain the following al-

gorithm for computing the primary decomposition of ideals satisfying the conditions
of Proposition f.4.3]

Algorithm 4.4.5. PPD-0 (R;x; I;p) : Primary Decomposition Over a PID - Primary

Contraction Case
Input: Ring R; variables x = z1,...,x,;ideal I C R[x];p € R
Assumptions: R is a PID, (p)R is maximal, / N R is (p)-primary.
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Output: {Q1, ..., @} such that Q; C R[z] is primary and I = () Q;.

Step 1: If [ is zero-dimensional (which can be checked by Proposition 4.2.8)) return

its decomposition using ZPD (which was developed in Proposition 4.3.1).

Step 2: Else if [ is not zero-dimensional, find ¢ such that I N R[z;] is not zero-

dimensional (such an ¢ can be found by Corollary 4.2.7).
Step 3: Let R = Rlz;|, &' = @1, ..., Xi 1, Tig1,. o, Ty, [€ = IR’(p)[a:’].

Step 4: Find 7’ € R’ — (p)R’ such that [ = (I,7") N (I¢ N R'[2']) (such an r’ exists
by Proposition 4.4.2).

Step 5: Let {@1,...,Qn} = PPD-0 (R’(p); x'; 1% p). (As in the proof of Proposition
_ I° and (p) I}, satisfy the assumptions of the algorithm. This step is a recursive

iteration of the algorithm where the number of variables is reduced by 1).

Step 6: Let QF = Q; N R'[z']. Af Q; = (ha, ha, ..., hs) Ry, [2'] where h; € R [2],
then after equating the denominators of the coefficients of i; we can write h; = f;/t;
where f; € R[z'] and t; € R’ — (p)R'. Since ¢; is a unit in R[,, we have @Q; =
(f1, f2r o [) R [2'] = LR, [2'] where I; = (f1, fo, ..., fs) as an ideal in R'[2'].
Hence, Qf = I; R, [2'] N R'[2'] which can be computed by Proposition(3.2.11{ Then

as in proof of Proposition 4.4.3] {Q5,QS,...,Q¢,} is a primary decomposition of
IeC).

Step 7: If (I,7") = (1) then return {Q¥, ..., Q¢ }. (By ideal membership algorithm
we can check whether (7,7') = (1) or not. In this case, I = [°°, hence a primary

decomposition of /° gives a primary decomposition of I).

Step 8: If (I,7") # (1), then let {Q),...,Q.,} = PPD-0 (R;z;(I,7");p). (Note
that as in the proof of Proposition if (I,7") # (1), the conditions of the al-
gorithm hold for the ideal (I,r’) in R[z]. While I N R]x;] is not zero-dimensional,
(I,r") N R[x;] is zero-dimensional as in the proof of Proposition [4.4.3] In the recur-
sive iteration of the algorithm in this step, the number of variables x; such that the

contraction of the ideal to R|x,] is not zero-dimensional is reduced at least by 1).

Step 9: Return {Q%, ..., Q%,, @, ..., Q. } where {Q5, ..., Q¢ } is the decomposition
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of I and {Q), ..., @, } is the decomposition of (I,7') in the case (1,7') # (1).

Proposition 4.4.6 (Proposition 8.5 in [[13])). Let R be a PID and I be an ideal in R|z).

Then it is possible to compute a primary decomposition for 1.

Proof. We have two cases.

Case 1: I N R is not zero-dimensional, i.e., I N R = (0) and R is not a field (since in
a PID which is not a field, the dimension of an ideal can only be 0 or 1. (0) is the only
ideal of dimension 1 and zero-dimensional prime ideals are given by (p) where p is a
prime in the PID). Then by Proposition[4.4.2] for the prime ideal (0) C R we can find
r#0,r € Rsuchthat I = (1,7) N (I Rlz] N Rlx]) where I R)[z] N Rlx] = I
Since R(q) is the quotient field of R, I R(g)[z] can be decomposed by Corollary
by the algorithm PPD-0 developed in Proposition #.4.3] Then we can contract the
decomposition to R[x] by Proposition Afterwards, we need to decompose
(I,7). Wehave (I,r)NR = (') forsome r’ € Rsuchthatr’ | r (sincer € (I,r)NR).
Here, " # 0 since r # 0. If 7’ is a unit in R, then (I, r) = R[z], thus we do not need
to decompose it. If r’ is not a unit, then (/,7) N R is zero-dimensional and how to

decompose (I, r) is explained in Case 2.

Case 2: I N R is zero-dimensional. Let I N R = (r') = ([ p;") where ' = [ p{" is
the factorization of r’ into irreducibles in R and each (p;) R is a maximal ideal in R.

We need a claim.
Claim 1: (pj",I) N R is (p;)-primary in R.

Proof of Claim 1: We need to show that \/(p;", 1) N R = (p;) (since (p;) is max-
imal, this will imply (p;”,I) N R is (p;)-primary). We have pi* € (p;",I), there-
fore (p;) C +/(p;*,I) N R. To show that (p;) 2 +/(p;*, ) N R, it suffices to show
(pi) 2 (pi*,I) N R since v/ (p;) = (p;) (because (p;) is a prime ideal). Let m =
pith(xy, .., xy) + k(xy, ... ) € (p7, 1) N R. Here, h(xy,...,2z,) € R[x] and
k(xy,...,z,) € I. Thus, k(z1,...,2,) = piq(x1,...,2z,) + ko where kg € R,
piiq(zy,. .., ,) consists of the non-constant terms of k(zy,...,x,), and kg is the

constant term of k(x1, ..., z,). If we multiply both sides of the above equation by
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Ag—1, OG41

pit D Py o pee, then we get
S
P ptk = ([ i) a + ot T el Pk
=1

which is an element of I since k € I. Thus, we can conclude

Q-1 OG41 (o7}

Pt Dy oyt P ko € TN R since [[7_, pi € I. Therefore, p;"
INR=([_,pj"). Hence, p; | ko. Thus, m = p{"h(z1,...,x,) + k(z1,...,2,) €

ko since

(p;) which shows (p;*,I) N R C (p;). Therefore, (p;*,1) N R is (p;)-primary in R

which proves the claim.

Now, (p;*, ) can be decomposed by the algorithm PPD-0 developed in Proposition
(Note that the conditions of Proposition hold since (p§, 1) N R is (p;)

-primary and (p;) is maximal in R). Here, we need another claim:
Claim 2: I = (_,(p;*, I).

Proof of Claim 2: Letp = [[ p;" and ¢; = p/p;". Then we get (q1,q2,...,¢s)R =R
since in the PID R, we have gcd(qy,...,qs) = 1. Then r1qy + roga + - - + 74qs = 1
for some r; € R. Lety € (\(p;", I), then for each i, we can write y = p{"h; + k;
where h; € R[z] and k; € I. Since ¢;p;" = [[p;" € I we get ¢,y € I for all i.
Thus, y = 1-y = (rq1 + 72q2 + -+ + 75qs) -y = Y_7i(qiy) € I. This shows
Ni—,(pi*, I) C I. The reverse inclusion is obvious, hence we get the equality which

proves the claim.

Now, since I = ();_,(p{*,I) and we can find primary decompositions of (p{‘, )
as stated above, we can obtain a primary decomposition of /. Note that the above

decomposition is not necessarily irredundant. 0

Algorithm 4.4.77. PPD (R; x; I) : Primary Decomposition Over a PID
Input: Ring R; variables x = x4, ..., x,;ideal I C R|x].
Assumptions: R is a PID.

Output: {Q1,...,Qn} such that Q; C R[z] is primary and [ = [, Q;.
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Step 0: If I N R is zero-dimensional (i.e., if I N R # (0), skip to Step 4 replacing
(I,7) in Step 4 by I and {Q5,...,Q¢} by @.)

Step 1: If /N R is not zero-dimensional (i.e., if /N R = (0)), then findanr # 0,7 € R
such that I = (I,7) N (I R[] N R[x]) (we can find such an r € R by Proposition

4.4.2).

Step 2: Let {Q1,...,Qr} = PPD-0 (R); z; [ R)[x]; 0). (Here, we find the decom-
position of /¢ = I R[] as in the proof of Proposition 4.4.6).

Step 3: Let Q5 = Q; N R[x]. (Each Q¢ can be computed using Proposition [3.2.11|as
explained in Step 6 of Algorithm {4.4.5/above. Then {Qf, ..., Q¢} gives a primary

decomposition of 1°¢).

Step 4: Compute (I,r7) N R = (r'). (We can use Elimination Theory to compute a
basis of (/,7) N R and since ({,7) N R is a PID, we can reduce this basis to a single

element. Note that we should compute 7 N R = (') if I N R # (0) in Step 0).
Step 5: If v/ is a unit, then return {QY, . .., Q¢%,}. (Since then [ = [°°).

Step 6: Else if 7 is not a unit in R, then factorize ' = [ p;"* where p; are irreducible

in R (note that by assumption, we can factorize elements of RR).

Step 7: For all 4, let {Q%, ..., Qj}, } =PPD-0 (R;x; (I, p]"); p;). (Here, this gives the
decomposition of ((1,r),p"") = (I, p;"") (the equality holds since p;"* | r). Note that
in the case that I N R # (0) in Step 0, we already need to compute the decomposition
of (1, pi")).

Step 8: Return {Qf,...,Q5} U (U, {@}, ..., @} })- (As in the proof of Proposition
if IN R = (0), which corresponds to Case I in the proof, we have I = (I,r) N
1. {Qf, ..., Qf} is the list of primary components of 1°°, {Q1, . .., Qy, } is the list of
the primary components for ((1,7),p;"") = (I, p;"") as explained above, and (I, 7) =
M ((ZL,7),p""). Therefore, the union of these lists is a list of the primary components
of I We get I = 1°° (1 (I,r) = I A (N,((1, ), 7)) = (N, @5) N (N, Q).

In the case where INR # (0), which corresponds to Case 2 in the proof of Proposition
we go from Step O to Step 4 and replace (I,7) by I. In this case, we have
I=,(I,p") =, Q5 Here, {Qf,...,Q},} is the list of the primary components
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of (I,p"") and we take {Q5, ..., Q%} = & as noted in Step 0).

4.5 Algorithm for Computing the Associated Primes and Radical of an Ideal

In this section, we show that the algorithms introduced above also give the associ-
ated primes, hence, the radical of the ideal / to which the algorithms can be applied.
If I = (Q; is an irredundant primary decomposition of I and \/Q); = P;, then
VI = () P;, where P; are the associated primes of /. Note that, the ZPD (Algorithm
returns an irredundant primary decomposition. The other algorithms PPD-0
(Algorithm #.4.5) and PPD (Algorithm return primary decompositions which
may or may not be irredundant. For any primary decomposition / = [ (); we can
obtain an irredundant primary decomposition of I by checking ; D ;4 @j using
Grobner basis techniques and removing the redundant component. Therefore, to ob-
tain the associated primes and the radical of I, it suffices to know each /Q); for the

decompositions of I = () Q; returned by the algorithms we introduced.

Proposition 4.5.1. For each ideal I C R[z] where one of Algorithm or Al-
gorithm is applicable, it is possible to compute the associated primes and the
radical of I.

Proof. We need to show that we can compute 1/Q; for the decomposition I = [ Q;
returned by any of the algorithms mentioned above. As stated in the remark after
Algorithm this algorithm returns an irredundant decomposition I = [ @Q; and
explicitly computes 1/(Q;. For Algorithm as in the proof of Proposition
the algorithm expresses [ as I = (] I; such that Algorithm can be applied to de-
compose each [;, thus it suffices to show that the radicals of the primary components

are computable for the output of Algorithm[4.4.5]

In the Algorithm let I C R[zy,...,x,] be such that there are k variables z;,
where I N R[z;] is not zero-dimensional. If £ = 0, then I is zero-dimensional and
we can apply Algorithm [.3.2]to compute primary decomposition and the associated
primes. Also, if n = 0, then by assumption I = I N R is (p)-primary, hence (p) C
R is the unique associated prime of I. Thus, if & = 0 or n = 0 the associated

primes are computable by Algorithm[.4.5] Proceeding by induction, assume that the
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associated primes of [ are computable by Algorithm when [ C R[zy,...,x,]
and number of x; such that / N R[x;] is not zero-dimensional is less than &, or when
I C R[xy,...,2, 1] (note that & = 0 or n = 0 is the base step of induction). For
the ideal I N R[zy,...,x,] (n > 1) with £ > 1 variables z; such that I N R[z;] is
not zero-dimensional, following the arguments in the proof of Proposition 4.4.3] the
algorithm first expresses I as [ = (I,7’) N I°°. Here, (I,7") C R|xy,...,x,] is either
the unit ideal or the algorithm can be applied to (7,7’) in which case there are less
than & variables z; such that (I,r") N R[x;] is not zero-dimensional. In the former
case, I = I°°, hence the decomposition of I is the decomposition of /°“ which is
explained below. In the latter case, by the inductive hypothesis, the associated primes

of (I,r") are computable (the number of variables did not change but k is dropped).

The algorithm decomposes °“ by decomposing ¢ = [ Rzp) [z'] and then contracting it
to R'[2'] = (R[x;])[2'] = R[z1, ..., x,]. The algorithm can be applied to /¢ which is
in a polynomial ring with n — 1 variables. Hence, by the inductive hypothesis, the al-
gorithm returns a primary decomposition /¢ = [ Q., where \/a = P, are explicitly
computed. Then the primary decomposition of 1¢¢ is I°* = Q¢ = ((Q; N R'[2']).
Using the general property v/.J¢ = (\/7 )¢ for the contracted ideals, we obtain \/QTZC =
(\/a)C = P¢ = P, R'[2/]. This is so, because P, are explicitly computed and we
can compute the contractions P; N R'['] by Proposition as explained in Step
6 of Algorithm Therefore, the associated primes of /° can be explicitly com-
puted. As aresult, for I = (I, r") NI, the algorithm returns primary decompositions
of (1,7') and I°¢ separately where the radical of each primary component is explicitly

computable. This completes the proof of Algorithm by induction. O
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CHAPTER 5

A SECOND APPROACH FOR COMPUTING PRIMARY DECOMPOSITION

5.1 Introduction

In this chapter, we give a summary of the methods and algorithms developed by
Eisenbud, Huneke, and Vasconcelos in the paper entitled as “Direct Methods for
Primary Decomposition” [4] for the computation of the equidimensional hull, the
radical, the associated primes, and the primary decomposition of an ideal / in a poly-

nomial ring S = k[xy, ..., xz,|, where k is a field.

The algorithms by Gianni et al. in [13] for primary decomposition which we exam-
ined in the previous chapters include a PROJECTION process of intersecting an ideal
I'in R[xy,...,x,] with R[xy,...,x, 1] (using elimination theory and Grobner ba-
sis). This PROJECTION process decreases the number of variables and inductively

reduces the problem to one variable case eventually.

However, the methods developed by Eisenbud et al. [4]] do not use such a PROJEC-
TION process and are called direct methods. These methods only use the FACTOR
and SYZYGY processes which are intrinsic in the problems related to primary de-

composition.

As stated by Eisenbul et al. in [4], avoiding the PROJECTION process is desirable
since the choice of the subring R[x1, ..., z,_1] to which the ideal I is projected (con-
tracted) is generic and it does not take into consideration the symmetry or special
properties the generators of the ideal / may have, hence the use of PROJECTION

results in less efficient algorithms.

Besides, the use of FACTOR process (factorizing a polynomial into irreducible fac-
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tors) in the case of one variable polynomials in the problem of finding associated
primes of an ideal (the last section in this chapter), the algorithms we will examine
use computational techniques derived from computation of syzygies. Basically, for
a submodule of a free module over the polynomial ring S = k[z1,...,xz,], Grob-
ner basis of the submodule (with respect to a multiplicative order) can be computed
using standard algorithms, and the corresponding syzygy for the generators of the
given submodule is obtained as a result of these algorithms. (For rq,...,7,, in
the module M over S = k[zy,...,x,], the syzygy submodule is {(ay,...,a,) €
S™ayry + -+ amry, = 0}).

Given that Grobner bases and syzygies can be computed, the following can also be

computed, and the algorithms we will examine make use of these computations:

1) For a given module M over S (“M is given ” means, finitely many generators
of M as an S-module are specified with finitely many relations among them which

generate all S-linear dependence relations), a free resolution of M can be computed.
2) The codimension of an S-module M can be computed.

3) If I and J are ideals of S and M C N are submodules, then INJ, (M : J) = {r €
N |jre M forallje J}, (M :N)={jeS|jN C M}, annM = (0: M),
(M :J*) =J,,(M : J") can be computed.

4) Given an S-module M and i > 0, Exzt'(M,S) can be computed first by con-
structing a free resolution of M, and then dualizing this sequence and computing

Kernel/Image.

Using the algorithms of the above computations as tools, we now present the outline
of the algorithms for computing the equidimensional hull, the radical, the associated
primes and the primary decomposition of an ideal I of S = k[x,...,z,]. Note that
the primary decomposition of an ideal is generalized to the primary decomposition
of a submodule in a module (see [S] pp.383), and some results and algorithms we
examine in this chapter are stated in this more general setting, although the aim is the

primary decomposition of ideals in S = k[x1, ..., z,).

We will omit the proofs of the theorems (which are often technical results involving
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higher level homological algebra) and we focus on explaining the algorithms which

are consequences of these theorems.

5.2 Finding the Equidimensional Hull of a Submodule

Throughout, we assume that all modules are finitely generated. We define equidi-
mensional hull of 0 in a module M as the submodule NV that consists of all elements
whose annihilators have dimension less than the dimension of M. Alternatively, V is
the intersection of all the primary components of 0 in M having maximal dimension.
As to the modules, if M’ C M is a submodule, equidimensional hull of M' is defined
as the preimage in M of equidimensional hull of 0 in M /M.

If I is an ideal in ring .S, then the equidimensional hull of / means the equidimen-
sional hull of [ in S as a submodule of S. We write hull(N, M) or, if it is obvious

from the context, hull N for equidimensional hull.

The following theorem establishes a connection between hull and some other proper-

ties of primary decomposition and Ext.

Theorem 5.2.1 (Theorem 1.1. in [4]). Let M be a module over a regular domain S,
set I, = ann ExtS(M,S) :

1) 1. has codimension > e and M /(0 :ps I.) has no associated primes of codimension
e. In particular, a prime ideal P C S of codimension e is associated to M if and only

if P contains I..

2) The equidimensional hull of 0 in M is the kernel of the natural map
m: M — Exti(Exts(M,S),S)

where c is the codimension of M.

3)If I = anngM, then hull(I) = I..

In particular, for any ideal I, hull(I) = anngExt%(S/1,S).

We omit the proof of this theorem and concentrate on the applications of it. The proof

is given in [4].
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We can use Theorem[5.2.1|to compute equidimensional hull of an ideal, or to remove
the components of dimension less than a given number. We can state the result in

case of modules.

Algorithm 5.2.2 (Algorithm 1.2. in [4]). (Removing components of dimension less
than e) Let M be a module over S = k[zy,...,xz,], let e be an integer (in general
bigger than or equal to dimM). We find a submodule N, which is the intersection of
the primary components of ) that have dimension bigger than or equal to e.
Set f:=dimS, set N :=0C M.
while f > edo
Compute Ext! (M, S);
if codim(Ext/ (M, S)) = f then
I := annihilator(Ext! (M, S));
N := (N 1Iy);
end if
Decrement f;
(Optional : Set M := M/N);
end while

return N.

The following is a direct application of Theorem to find the equidimensional
hull of an ideal.

Algorithm 5.2.3 (Algorithm 1.3. in [4]). (Equidimensional hull of an ideal) Given an
ideal I C S = k[xy,...,x,], we need to find the equidimensional hull of / which is
the intersection of the primary components of / having maximal dimension.
c:=codim/ ;
return

ann Ext$(S/1,S).

If we replace S/I by M in the algorithm, then we can compute the equidimensional
hull of the support of any module M. In fact, this algorithm is an application of third
part of the Theorem [5.2.T] above. Following is another application that is used to find

the equidimensional hull of 0 in a module.

Algorithm 5.2.4 (Algorithm 1.4. in [4]). (Equidimensional hull of 0 in a module)
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Let M be a finitely generated module over S = k[zy,...,x,]. We need to find the
equidimensional kernel N C M.

c:=codim M ;

m: M — Extg(Extg (M, S),S);

return N = kernelr.

Here, 7 is the canonical map which can be computed in several different ways. One
way is to form the comparison map between the dual of a free resolution of M and
a free resolution of Ext§(S/I,S). Another way is to construct a polynomial subring
of S, say T, where dim7" = dim N such that N is finitely generated over 7" and 7" can
be constructed as a Noether normalization for S/annN. Afterwards, the kernel of the

natural map of N into its double dual over 7' can be taken.

We can find an ideal whose associated primes are equal to the associated primes of a

module which has a given codimension:

Algorithm 5.2.5 (Algorithm 1.5. in [4]). (Associated primes of given codimension)
Given a finitely generated module M over S = k[xy,. .., z,], we want to find an ideal
whose associated primes are exactly the associated primes of M having codimension
e.
I, :=ann Ext$(M, S);
if codim I, > e then
return S ;
else
return the equidimensional hull of /. .

end if

Analysis of the Algorithm: This algorithm uses the second part of the first statement
of Theorem [5.2.1] that is, for a prime ideal P of codimension e in S, P is associated

to the module M if and only if P contains /..

Let P be an associated prime of M having codimension e. Then, since codim(I.) > e

by Theorem 1.1., we analyze two cases: codim(I.) > e and codim(I.) = e.

For the case codim(1.) > e (the first part of the algorithm), if /. C P, where P is

a prime of codimension e, then by definition of codimension of ideals, codimi, <
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codimP. Therefore, e < codiml, < codimP implying e < codimP which is a
contradiction. Therefore, there is no such prime ideal P in this case. Hence, M has
no associated primes of codimension e. To express this result, the algorithm returns
S (as an ideal of S, S has no primary decomposition, hence no associated primes.
The set of associated primes of S and the set of associated primes of M which have

codimension e are both empty).

For the case where codim(I.) = e (the second part of the algorithm), let I, C P
where P is a prime ideal of codimension e. Since codiml., = codimP = e by our
uppermost assumption on P and I, C P, we can conclude P is a minimal prime
containing /.. Since any prime ideal containing /. contains a minimal prime ideal
associate to I, (see [10] pg. 52), we obtain that P is an associated prime of /..
Therefore, the equidimensional hull of . is the desired ideal, since the associated
primes are the minimal primes containing /., and have the same codimension as /..
Equivalently, (as shown above), it consists of the primes P containing /. which have
codimension e, hence the associated primes of M which have codimension e by part

1 of Theorem[3.2.1]

Note that we compute the equidimensional hull of I, by Algorithm[5.2.3]

5.3 The Radical of an Ideal

To find the radical of an ideal [ in a polynomial ring S, we state two methods here.

Algorithm 5.3.1 (Algorithm 2.2. in [4]). (Radical of a generically complete intersec-
tion) Let J be an unmixed 1deal of pure dimension ¢ which is a generically complete
intersection where J = (f1, ..., fm) C klx1,..., 2]

Set J,_. := the ideal of ¢ x ¢ minors of the Jacobian matrix

021y 2dy f1y- -5 fm)/O(21, ..., x,) Where 21, ... z; are general linear forms.

return radJ = (J : J,_.).

Proposition 5.3.2 (Proposition 2.3. in [4]). Let J C I C S = k[z1, ..., x,] be ideals

of the same dimension, let J be equidimensional with radical J'.
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In this case, equidimensional hull of the radical of I is given by the following formula:

equidimensional rad(l) = (J' : (J' : I)).

Proof. For this proof, we use the last statement of Lemma[5.3.3|below. Let J' = () P,
where P; are all prime ideals containing J, by definition of radical ideal. In fact, this is
equal to the intersection of minimal prime ideals of J. So, let J' = P;N---N P; where
P; are minimal primes of J, 1 < ¢ < ¢. Since J is equidimensional, dim P; = dim.J,
for all 7, where 1 < ¢ < . By assumption, dim.J = dimlI, so let dimP; = dimJ =
dimI = d. By Lemmal[5.3.3|c, (J' : I) = () Q;, where Q; are prime ideals such that
J C Qpand I ¢ Q;. Let Py,..., P,, s <t be the prime ideals among P, ..., P,
such that J' C P, and I ¢ P, and let Py, ..., P, be the ones such that [ C FP; for
(s+1) <j <t P,...,Psare among the above mentioned ideals ();’s. Since ();
is a prime ideal containing .J', there exists prime ideals P, such that P;; C Q; for
some ¢;, where 1 < i; < t. This is because P,’s are minimal primes of J (or J).
In fact, 1 < 4; < s, since these P;; cannot contain I. Otherwise, I C P, C Q;
implies I C @; which contradicts the result obtained above by using Lemma|5.3.3]c.
Thus, (J' : I) = (\Q; = P, N ---N P since each (), contains a minimal prime
P; (see [10], pg.52) . Let K = (J' : I). Hence, K = P, N--- N Py by above.
Then, (J' : K) =) @vj where @vj are prime ideals such that .J' C @vj and K ¢ @vj
by Lemma 5.3.3\c. So, there exists prime ideals F;; such that F;; C @; for some ¢,
where (s+1) < i; <t. Here, K ¢ P, ; otherwise, K C P;, C @vj but this contradicts
the above result obtained by Lemma c. We obtain, (J' : K) =) Q; = NP
such that K ¢ P,. We know that Py, ..., P; all contain K. If (P, N---N P;) C P,

for some 1 < 7 < ¢, then P; C P, for some 1 < j < s. This is because if a
prime ideal contains an intersection of prime ideals, then one of the primes in the
intersection is contained in the prime ideal that contains the intersection. Since .J
is equidimensional, dimP; = dimP;, therefore, P, = P;. Thus, (J' : (J' : I)) =
N 67] = P,y N---N P, where P, q,..., P, are the minimal primes of ./ containing
I and they all have dimension d. In fact, it is the intersection of the minimal primes

of I having dimension d. We have dimP; 1 = -+ = dimP, = d = diml = dim/J.

Now, (equidimensional radical of I) =) ]Si, where f’, is a minimal prime of [ such

that dimﬁi =d. Since J C I and dimI = dimJ, each ]5Z is also a minimal prime of
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J. Therefore, {P,,1, ..., P,} = {P,} which means that (equidimensional radical of
I)=(J":(J :1)). ]

For completeness, we include the following technical lemma which plays an impor-

tant role in the proof of the above proposition.

Lemma 5.3.3 (Lemma 2.4.c in [4]]). For ideals I and J in a Noetherian ring R, if |

is radical, then (I : J) is radical and

(I:0)=(\P
where P; ranges over all prime ideals containing I, but not containing J.

Algorithm 5.3.4 (Algorithm 2.5. in [4]). (Reduction of equidimensional radical to
complete intersection case) Given ideals J C [ C k[xy,...,x,], where J is a com-
plete intersection, and / and J have the same codimension, we compute the equidi-

mensional hull of the radical of I as follows:

Compute
J' := radJ by Algorithm[5.3.1}
return

equidimensional radical [ := (J': (J': I)).
This is an implementation of Proposition above.

The following theorem, which is proved in [4], plays the central role in the second

method for computing the radical of an ideal that we will present in this section.

Theorem 5.3.5 (Theorem 2.7. in [4]). Let S be a polynomial ring over a perfect field
k, let I C S be an ideal whose dimension is d. If the characteristic of k is nonzero,
suppose that the nilradical of S/ 1 is generated by elements whose index of nilpotency

is less than the characteristic of k. If for some integer a > d we have
dim _fo41(I) < d

then
L= : _7Z.,(1))
has the same equidimensional radical as I. Moreover, if a = d then I, is radical in

dimension d, i.e. the primary components of I having dimension d are prime.
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Remark: Here, if [ is generated by the sequence of relations f = fi,..., f,. then
J(f) stands for the Jacobian matrix of this sequence, i.e. it is the n x 7 matrix
of;

having the partial derivative 7> as the term in the ith row and jth column. On the

other hand, Z,(f) is the ideal generated by (n — a) x (n — a) minors of _#(f) and
we have Z,(I) = Z.(f)+ 1.

The following algorithm is an application of this theorem for finding the radical of an

equidimensional ideal.

Algorithm 5.3.6 (Algorithm 2.9 in [4]). (Equidimensional Radical) Let [ C S =
k[zy,...,x,) be an equidimensional ideal. We find the equidimensional radical U of
I which is equal to the intersection of all primes containing / whose dimensions are
the same as the dimension of /.
a:=n—1
d = diml
while a > d do
while dim _7,(I) = d do
1:=(I: £.(1));
end while
decrement a;
end while
1:=(I: ZuD);

return /.

Analysis of the Algorithm: Firstof all, I C _#y(I) C _#1(I) C --- C Zoa(l) C
In(I) = Sandd = dim(I) > dim_Zo(I) > --- > dim _F,_1(1) > dim_g,(I) =
dim(S) = —1 (by convention) imply that there exists a largest value of a such that
dim _Z.+1(1) < d (hence dim_#,(I) = d). The second while loop in the algorithm
starts from this largest value of @ (@ < n — 1). Since the ring is Noetherian, every
ascending ideal chain stabilizes after finitely many steps. Let [ = Io C [y C --- C
Iy = I 4, be the ideal chain in S, defined by I = [y and [;41 = (I; : _Z.(I;)) for
i > 0,0 <4 <t Then we have I, = (I, : _Z,([;)) since the chain is stabilized
at I, (Iy = ;). I =1y C I, C --- C Iy and dim_Z,41(I) < d imply d >
dim _Fop1(I) > dim_Zoi1(L) > -+ > dim _Fa1(1y), that is dim_Z,1(1;) < d
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for all 7 (Note that, [}, C [}y implies Zo41(Ix) C _Zat1(Ik41) since we can extend
a set of generators of I to a set of generators of /;,;, hence the Jacobian matrix
for _Z.41(1x) is a submatrix of the Jacobian matrix of #,1(/+1). Note also that,
_Zat1(1y) is independent of the choice of generators for Iy, _Z,1(Ik) C Zar1(Lrt1)
implies dim_Z,11(1)) > dim_Z,11(Lp41)).

Note that, throughout this while loop, the ideal I is modified by assigning the new
value of [ as (I : _#,(I)) for some value of a where [ satisfies the conditions of
Theorem [5.3.5) above. Under these conditions, / and (I : _#,(I)) have the same
equidimensional radical due to Theorem [5.3.5] above. Hence, dim(I) = dim(I :
Fu(I)). As aresult, diml; = d for all ¢, where 0 < i < t, and the equidimensional
radicals of /; are the same for all . If we can show that dim _¢Z,(I;) < d then the

while loop terminates at I;, and we can decrement a.

Since I, C _Z,(1;) by definition of _#,(1;), we have dim _#Z,(I,) < diml, = d. To
prove dim_Z,(1;) < d, assume dim_¢,(I;) = diml, = d. Thus, there exist prime
ideals Fy, ..., P, such that:

L Z.I,)CPyC---CPFy

Since the dimension of _#,(/;) and I, are assumed to be equal, F is a minimal prime
of I;. Therefore, F, is an associated prime of I;, too (see [10] pg.52). Hence, Fy =
(I; : q) for some ¢ € S — I;. (If ¢ were in I; then (I; : ¢) would be S which is
not possible, since F is a prime ideal of S). Therefore, 7,(I;) C Py = (I, : q).
This means, for every x € Fy, qv € I,. Hence, for every z € _7,(1;), qv € I,.
So,q € (I; : Z.(I;)) = I, which is a contradiction since ¢ € S — I;. Therefore,
dim _g,(1;) < diml; = d. As aresult, in the sequence / C Iy C --- C I, = Iy
there exists ¢ < ¢ such that dim_#,(1;) < d. This proves that the second while loop
terminates at /; for the smallest such ¢. Indeed, 7 = ¢ by the defining condition of the

while loop (1,41 exists if dim_#,(1;) = d).

If we write _Z,(I;) = _Z4+1-1(;), then we can apply Theorem above by sub-
stituting / = I; and taking a — 1 in place of a, indeed we keep decrementing «a
until we get dim_#Z,(I;) = d (here, dim_¢Z,41(1;) < d). For this decremented value
of a, we start the second loop again which gives the sequence of ideals Z, = I;,

Tit1 = (T © _Za(Zy)) for k > 0. This while loop terminates as explained above.
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By the same argument, we keep decrementing @ until @ becomes d + 1. Suppose the
ideal that the algorithm gives at the end of the first while loop where a = d + 1 is J,
then we have dim_#,1(.J) < d, hence by Theorem above and by taking a = d
we obtain the ideal J; = (J : _#4(.J)) that is, an ideal which is radical in dimension
d, and J and J; have the same equidimensional radical. Note that throughout the
algorithm, the equidimensional radical of the ideals do not change by Theorem [5.3.5]
above. Hence, the equidimensional radical of [ is equal to the equidimensional radical
of J; which equals to the equidimensional hull of J; since .J; is radical in dimension
d, where d = dimI = dim.J;. Since the ideal I we started with is equidimensional,
J1 1s also equidimensional, hence rad(1) = equidimensional rad(l) = equidimensional

hull 0fJ1 = Jl.

Remark: If we apply the above algorithm to an ideal / which is not necessarily
equidimensional, then the equidimensional radical of [ is given by the equidimen-

sional hull of .J;, where J; is the ideal that the above algorithm returns.

Now it is possible to compute the following invariants of any given module:

Algorithm 5.3.7 (Algorithm 2.10. in [4]). (Finding the intersection of the primes
associated to M having codimension e)
I, == annExt§ (M, S).
if codimlI, = e, then
return the radical of the equidimensional hull of I.;
else
return S.

end if

Analysis of the Algorithm: By Algorithm we find the ideal / whose associated

primes are the associated primes of M having codimension e.

The aim of Algorithm is to find the intersection of these ideals. Since I is
equidimensional, we can use Algorithm @] above. Furthermore, since all associ-
ated primes have equal dimension, by Algorithm[5.3.6] we find the equidimensional
radical of . This gives us, by definition, the intersection of the associated primes of

M having codimension e, as desired.
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Computation of the Radical of an Ideal I: Using Algorithm[5.3.7] we can compute

the radical of an ideal [ as follows:

For each e, where 0 < e < diml = d, compute the intersection of the associated

primes of I having dimension e, say K. So, rad(I) = N, K..

Algorithm 5.3.8 (Algorithm 2.11. in [4]). (Finding the intersection of the minimal

associated primes of M having dimension e)

Compute the ideals J. and J..1, where J. is the intersection of

the associated primes of M having dimension > e.

(That is, J. = K; ,i > e, where K; is computed by Algom'thmm

and it is the intersection of the primes associated to M having dimension i).

return (rad(J.) : Jei1).

Analysis of the Algorithm: We first define J, as above. J, = ﬂiZe K;. Each K, can
be computed by Algorithm above. Hence, we can compute .J, and J.;;. Note
that, J. and J.; are radical, since they are the intersections of prime ideals. Hence,
rad(J.) = J. and the algorithm returns (J, : J.11). Now, J, is the intersection of the
associated primes of M which have dimension > e. Hence, J. is radical. Similarly,
J.y1 can be found. Hence, by Lemmaabove, (Je: Jetr1) = P; where J, C P;
and Je1 & P

Claim: (J, : Jey1) = (| P;, where P; is a minimal prime containing .J, and J.,1 ¢ P;.

Proof of Claim: Let P; be a prime that is not minimal. Let J. = (Qx C P,. P,
contains a minimal prime containing /., say é If P; does not contain J.,; then é

does not contain .J. ;. This proves the claim.

To prove that (J, : J..1) equals the intersection of the minimal primes of dimension
e, we proceed as follows:

Let J. = [ Q. Since J. = (Qr C P; implies Qx, C P;. (Here, @y and P; are
prime ideals). We get (), = F;, since P, is a minimal prime containing .J.. We have,
(Je : Jex1) = () P;, where P; is a minimal prime containing .J, and not containing
Jey1. For such a P, J. C P,. P;is a minimal prime containing .J. implies that
P, = Qy, for some k;, where J. = [ Q (Qy are associated primes). For such a P,

we have the following three cases:
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Case 1: dimP; > e. This implies J.,; C P; which contradicts J.,1 € P;. J..1 =
() Q; where (); are the associated primes of A/ having dimension > e. dimP; > e
also implies P, = (); for some j as shown above. Thus, J..; C F;, where dim(F;) >

e+ 1.

Case 2: dimP; = e and (J;,, = P, is not a minimal associated prime of M of dimen-
sion e. Then (), contains a minimal prime of M, say ();,, where ();, is a minimal
prime of M. Here, dim@);, > e, thus, J.41 C Q. Hence, J.11 C @y, C Qk, = Pi.

Again, we get a contradiction to J..1 Z P;.
Case 3: dimP; = e and P; is a minimal associated prime of M.
Claim:J.41 ¢ Qi, = P

Proof of Claim: Otherwise, if J.,, = ﬂ@ C Qy,, where dz’mCZg > e+ 1, and
@; are associated primes of M, then there exists Cffmj such that 6/2\,; C @y, and
dim(jn; > e+1 with @;,; being an associated prime of M. However, this contradicts

(0, being a minimal associated prime of M. This proves the claim.

As aresult, (J, : Jey1) = () P, where J. C P; and J.,; ¢ P, and these P; are the
minimal associated primes of M/ having dimension e.
Algorithm 5.3.9 (Algorithm 2.12. in [4]]). (Finding the intersection of the embedded

primes of M having dimension e)

Let K be the ideal that is the intersection of associated primes of M
having dimension e which can be computed by Algorithm[5.3.7}

Let K5 be the ideal that is the intersection of minimal primes of M
having dimension e which can be computed by Algorithm[5.3.8}

return (K : K5).

Analysis of the Algorithm: Since K is radical, (K : K3) is equal to the intersection
of prime ideals containing K and not containing K, by Lemma [5.3.3] above. To
compute K we can run the Algorithm [5.3.7)above for codimension n — e. Let Ky =
PN---NPand K, = PLN---NP,N---NP,. Hence, (K, : Ky) = (N_, P :
Ky) =N _,(P: Ky). (P, : Ky) = Sif1 <i < ssince Ky C P. (P, : K;) = B if
s+1<1i<tsince Ky ¢ P,. (Otherwise, if K = P, N---N FP; C P, then P; C P,

for some 1 < j < s. Hence, P; = F; (they are prime ideals with the same dimension)
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which yields a contradiction, since i > s.) Therefore, (K, : Ky) = ((_, Pi : Ky) =
SNn---NnSNP,N---N P, where P, 4, ..., P, are the embedded primes of M.

5.4 Primary Decomposition

From now on, we will be able to find primary decompositions with the help of afore-
mentioned techniques and a technique for finding a maximal ideal containing a given

ideal.

The process of finding a primary decomposition for an ideal / consists of two parts:
First, we find the individual associated primes; then we find a primary component for

each associated prime found in the first part.

The second part of this process can be done with the above developed techniques and

the following claim.

Claim: A primary component for the ideal / with the associated prime P is of the
form:

Qm := Equidimensional hull(I + P™)

for sufficiently large m.

Proof of Claim: The proof of this claim can be found in [11]. We show below that
Q. is P-primary. Let E(I) stand for the equidimensional hull of an ideal I. Let
(I + P™) = J,, and let J,, = T; N - - - N T} be an irredundant primary decomposition
of J,,. Also, let Q,, = E(J,,,) = T1N- - -NT}, where T); are the maximum dimensional
primary components of .J,,, for 1 < j < s. We have P™ C J,, and rad(P™) = P, so
rad(P™) = P C rad(J,,). On the other hand, I C P (since P is an associated prime
of I) and P™ C P implies [ + P™ = J,, C P. Hence, rad(J,,) C rad(P) = P
(since P is prime). Therefore, rad(J,,) = P. So, P = (rad(T;) implies rad(T;) =
P for some i (see [10], pg.8). Thus, rad(1;) = P C rad(T}) for all i # j. Hence,
dim(rad(T;)) < dim(rad(T;)) for all i # j. Therefore, rad(7;) is the unique associ-
ated prime of .J,,, which has the maximum dimension. As aresult, £(J,,) = Q,, = T;

where T is primary and rad(7;) = P. This proves that (),,, is P-primary.
Here, (), is uniquely defined if P is a minimal prime for /. Also, (),, is in any case
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a P-primary ideal. Bounds for the required m can be directly given, but for practical

purposes it is better to guess it and check the sufficiency by the following criterion:

Let () be a P-primary ideal containing /. Then () is a primary component for [ if and

only if the natural map

Lty : P)/11pp — S/Q
is a monomorphism [11]. An algorithm to compute /{pj is developed in §3 at [4].

As to find the associated primes of I, we can suppose that S is a polynomial ring.
Since we can find the intersection of all the associated primes of a given dimension by
Algorithm above, it suffices to find the individual components of an equidimen-
sional radical ideal . If we know the associated prime ideals of the homogenization
of the ideal I, then we can obtain the associated prime ideals of /. Hence, we may
assume / is homogeneous. By correspondence, finding the prime components of [ is

equivalent to finding the minimal primes of the ring R := S/I.

First, using the method of [[16]], (also see [7]), we can compute the integral closure R’
of R:= S/I.

The minimal primes of R are the intersections of R with the minimal primes of R'.
Hence, it is enough to find the minimal primes of a reduced integrally closed graded

ring which is R’ here.

Any integrally closed ring is a finite product of integral domains (see [9], pp.64).
Hence, minimal primes of R’ are in one-to-one correspondence with the indecompos-

able idempotents of R'.

To illustrate this, if we let R = Ry X - - - X Ry, where R; are integral domains, and let
I C R beanideal, then I = I X - -+ x I, where I; is an ideal of R;. Obviously, [ is
prime if and only if R’/I is an integral domain. Hence, R'/I = R, /I, X - -- X Ry/ Iy,
where R;/I; = (0)g, for all but one i, which means I; = R;. Therefore, if I is prime,
then ] = Ry X --- X Rj_1 X P; X Riy1 X --- X Ry, where P, is a prime of R;. Thus,
if 1 is minimal, then / = Ry X -+ X R;_1 X (0)g, X Riy1 X - -+ X Ry, since integral

domains have only one minimal prime which is (0).

Hence, a minimal prime ideal / of R’ can be matched to an indecomposable idempo-
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tent element of R’ whichis é; = (Og, X --- X 0g, , X eg, X Op,,, X --- x Op, ), where
er, is the multiplicative identity of R;. The correspondence is given by I = (0 : é;)

in R'.

Any idempotent has degree 0, since ¢* = e and the ring R’ is graded. Hence, idem-
potents are elements of the finite dimensional k-algebra A := Ry, where R is the

subgroup of R’ that consists of the elements having degree 0.

The minimal ideals of A (which is a product of fields since it is a reduced finite
dimensional k-algebra) are generated by indecomposable idempotents, i.e. the ones
which can not be written as a sum of any other idempotents. To find these minimal
ideals without using the idempotents, we need to find the intersection of all finitely
many maximal ideals of A except one. This is because the maximal ideals of A are
of the form:

Fix -+ xXF_1x(0)p x Fiiq X+ x Fy

where F; are fields.

To compute the minimal primes of ', let N be a minimal ideal of A, choose a

nonzero element s € A. Thus,

P=(0:s%)

gives a minimal prime ideal of A.

Now, we state a method to find the maximal ideals of a finite dimensional k-algebra,
A = klxy,...,x,|/1. There is a different approach to this problem which is men-

tioned in [8]. The method we mention here is probabilistic.

We can assume that A is reduced, since we are able to compute radicals by algorithms

in the second section. Thus, A is a product of fields.

Let z € A be any random element and let ¢ k. Determine whether x is a zero
divisor by computing Grobner basis for (I : z). Note that x is a zero divisor in

klx1,...,2,])/I if and only if (I : z) # I.

If z is a zero divisor, then let / := ([, z) and consider the following quotient A =

klxy1,...,2,]/(I,z). Note that, since z is a zero divisor in A = k[zy,...,x,]/1,
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(I,x) # klz1,...,x,]. Hence, k[xq,...,x,]/(I,z) is a finite dimensional k-algebra
with a smaller dimension. We proceed by induction on dimyA. dimpA = 1 implies

A is a field, hence (0) is a maximal ideal in A (base step).

Else if = is not a zero divisor, then determine dim;A by computing a Grobner basis
for the ideal defining A. Now, let r = r(x) be the smallest integer such that the

powers

are linearly dependent. If () = dimy A, then the linear dependence relation can be
stated as ¢(z) = 0, where ¢(¢) is a polynomial in one variable ¢. Hence, A = k[t]/(q).
If ¢ is a product of nonconstant polynomials as ¢ = pips, then py(x)pe(z) = 0.
Therefore, p;(x) is a zero divisor, and we return to the first case. However, if ¢ is

irreducible, then A is a field and (0) is a maximal ideal.

Hence, provided that x is a zero divisor or r(x) = dim;A, we can proceed the algo-
rithm and reach the result by induction on dimy A. Otherwise, we choose = again and

execute the above method.
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