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ABSTRACT

COMPUTATION OF THE PRIMARY DECOMPOSITION OF
POLYNOMIAL IDEALS USING GRÖBNER BASES

Tolgay, Betül

M.S., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Tolga Karayayla

August 2021, 88 pages

In this thesis, we investigate algorithms for computing primary decompositions of

ideals in polynomial rings. Every ideal in a polynomial ring over a Noetherian com-

mutative ring with identity has a primary decomposition, that is, it can be expressed as

the intersection of primary ideals (in a unique way or not). The existence of primary

decompositions in such polynomial rings is a result of the ascending chain condition

and the existence proof does not suggest any construction method for the primary

components of the ideal. In the first part of the thesis, we investigate the algorithms

developed by Gianni et al. [13] for the computation of a primary decomposition of a

given ideal in a polynomial ring. The main tool used in these algorithms is Gröbner

basis techniques for the computation of certain operations on ideals. We give a com-

plete discussion and analysis of the theorems and algorithms developed by Gianni et

al. in [13] here. The second part of the thesis presents another approach to the prob-

lem of computation of primary decomposition developed by Eisenbud et al. in [4].

This method avoids the projection of an ideal to a polynomial subring with one less

variable which was used for reduction in the algorithms developed by Gianni et al.

[13]. We give an outline of the algorithms developed by Eisenbud et al. in [4] here.
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The algorithms developed by both Gianni et al. [13] and Eisenbud et al. [4] make

it possible to compute primary components and associated primes of a given ideal,

hence also the radical of the ideal.

Keywords: Primary Decomposition, Polynomial Ideals, Gröbner Bases, Algorithms
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ÖZ

POLİNOM İDEALLERİNİN GRÖBNER BAZLARI KULLANILARAK
PRİMER BİLEŞENLERİNE AYRILMASI

Tolgay, Betül

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Tolga Karayayla

Ağustos 2021 , 88 sayfa

Bu tezde, polinom halkalarındaki idealleri primer bileşenlerine ayırma algoritmalarını

inceliyoruz. Birim elemana sahip değişmeli Noteryen halka üzerinde tanımlı bir po-

linom halkasının her ideali, primer bileşenlerine ayrılabilir. Başka bir deyişle, bu tür

idealler, primer ideallerin kesişimi olarak yazılabilir (bir veya birden fazla şekilde).

Bu tür polinom halkalarında primer bileşenlerin varlığı, söz konusu halkadaki yükse-

len zincir şartının sağlanmasının bir sonucudur, ancak bu varlık ispatı, idealin primer

çarpanlarının nasıl inşa edileceğine dair bir metot öne sürmez. Tezin ilk kısmında,

bir polinom halkasında verilen bir idealin primer bileşenlerini bulmak için Gianni

ve diğer yazarlar [13] tarafından geliştirilen algoritmaları inceliyoruz. Bu algoritma-

larda kullanılan esas araç, idealler üzerinde tanımlı belirli işlemlerin hesaplanması

için kullanılan Gröbner bazı teknikleridir. Bu bölümde, Gianni ve diğer yazarlar [13]

tarafından geliştirilen teorem ve algoritmaların tam bir analizini ve mütalaasını ya-

pıyoruz. Tezin ikinci kısmında ise primer bileşenlerin hesabı problemine Eisenbud

ve diğer yazarlar [4] tarafından geliştirilen başka bir yaklaşım sunuyoruz. Ancak, bu

metot Gianni ve diğer yazarlar [13] tarafından geliştirilen algoritmalarda, indirgeme
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yapmak için kullanılan, polinom idealinin, değişkeni bir eksik olan polinom alt hal-

kasına izdüşümünü alma işlemini kullanmamaktadır. Bu bölümde, Eisenbud ve diğer

yazarlar [4] tarafından geliştirilen algoritmaların bir taslağını sunuyoruz. Hem Gianni

ve diğer yazarlar [13] hem de Eisenbud ve diğer yazarlar [4] tarafından geliştirilen

algoritmalar, verilen bir idealin primer ve ortak asal bileşenlerini, böylelikle kökünü

de hesaplamayı mümkün kılmaktadır.

Anahtar Kelimeler: Primer Çarpanlar, Polinom İdealleri, Gröbner Bazları, Algoritma-

lar
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In this thesis, we investigate computational methods for obtaining a primary decom-

position of a given ideal in a polynomial ring. Primary ideals are in some sense

generalizations of prime ideals. A primary ideal is defined by the condition that ab is

an element of the ideal implies a is in the ideal or b is in the radical of the ideal. An

ideal is said to have a primary decomposition if it can be expressed as the intersection

of primary ideals. One of the important results about primary decomposition is that

every ideal of a polynomial ring over a Noetherian domain has a primary decompo-

sition. This fact relies on the ascending chain condition on Noetherian rings and its

proof is a pure existence proof which does not indicate any method for construct-

ing the primary components in the primary decomposition. Although the problem

of computing a primary decomposition of an ideal in a polynomial ring is purely a

problem in commutative algebra, it has strong connections with algebraic geometry.

For an ideal I ⊂ k[x1, . . . , xn] where k is a field, if I =
⋂
iQi is a primary decompo-

sition (Qi are primary ideals), the variety V (I) of the ideal is then equal to
⋃
i V (Qi).

Here the varieties V (Qi) are irreducible varieties since V (Qi) = V (
√
Qi) and

√
Qi

is a prime ideal for each i (radicals of primary ideals are prime ideals). This way,

V (I) is expressed as a union of irreducible varieties. As a result, having a method for

computing a primary decomposition of an ideal gives rise to a method of computing

irreducible components of the variety corresponding to this ideal.
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1.2 Contributions and Novelties

In this work, we examine two methods for computing a primary decomposition for

an ideal I in a polynomial ring. The first method we analyze in depth consists of the

algorithms developed by Gianni, Trager and Zacharias in the paper "Gröbner Bases

and Primary Decomposition of Polynomial Ideals" [13]. These algorithms are based

on Gröbner basis techniques for several operations on ideals. The algorithms are re-

cursively iterated by using a reduction step to a case in a polynomial ring with one

less variable. Obtaining the projection of an ideal to a polynomial subring with less

number of variables can be easily performed by elimination theory if Gröbner bases

with respect to a lexicographic order is used. These algorithms terminate when the

problem is reduced to the one variable case. In the paper [13] by Gianni et al., the

main result is an algorithm for computing a primary decomposition of a given ideal

in a polynomial ring over a PID which uses Gröbner Basis techniques. The algo-

rithm also computes the associated primes of the given ideal. This main algorithm

is built by first developing an algorithm for computing a primary decomposition for

zero-dimensional ideals and then reducing the general case to the zero-dimensional

case within the algorithm. As a biproduct, Gianni et al. provide a test of primality for

a given ideal and an algorithm for computing the radical of the given ideal (indeed,

the radical is the intersection of the associated primes which are given by the main

algorithm). In this thesis, we give a full explanation for the proofs of the theorems

which give rise to the algorithms developed by Gianni et al., and we also analyze

these algorithms step by step emphasizing their connections to the given theorems.

The algorithms usually involve branches and recursive iterations, and in our analysis

of these algorithms we clarify how the algorithm proceeds from one step to the other.

The second method for computing primary decompositions which we explore in this

thesis is developed by Eisenbud, Huneke and Vasconcelos in the paper "Direct Meth-

ods for Primary Decomposition" [4]. This method is different from the method devel-

oped by Gianni et al. in the sense that it avoids the projection operation used by Gianni

et al. to reduce the number of variables. The algorithms developed by Eisenbud et

al. use Ext groups and syzygy computations as tools to compute the equidimensional

hull, the intersection of associated primes of a given dimension, the radical and a pri-

mary decomposition of a given ideal in a polynomial ring over a field. We focus on
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explaining the implications of the theorems proved in [4] in the development of the

given algorithms rather than the proofs of the theorems, and we examine the structure

of the given algorithms and explain how they operate.

The algorithms developed by Gianni et al. in [13] are implemented as a package in

REDUCE and AXIOM, and the algorithms developed by Eisenbud et al. in [4] are

implemented as a package in Macaulay 2 programs for the computation of primary

decomposition of an ideal. This thesis is an extensive examination of these main

algorithms.

1.3 The Outline of the Thesis

We begin by reviewing the basic properties of primary decomposition in Chapter 2.

We include the proofs of the well-known results about primary decomposition for

completeness. In Chapter 3, we introduce Gröbner bases and develop Gröbner basis

techniques for performing various operations on ideals. These techniques are the

main computational tools in the algorithms we examine in this thesis. In Chapter 4,

we discuss the theorems and algorithms by Gianni et al. in [13] in full detail. We

begin with a test for checking whether a given ideal is prime or not using Gröbner

basis techniques. In §4.2, we investigate properties of zero-dimensional ideals and

the use of Gröbner basis in detecting whether a given ideal is zero-dimensional or

not. In §4.3, we analyze the algorithm for computing a primary decomposition of a

zero-dimensional ideal I ⊂ R[x1, . . . , xn] such that I ∩R is zero-dimensional for the

ring R. In §4.4, we analyze two generalizations of the algorithm in §4.3 to compute

a primary decomposition of an ideal in a polynomial ring over a PID. The first of

these is for zero-dimensional ideals, and the second one is the general case (for an

arbitrary ideal in such a polynomial ring). Mainly, we present three algorithms for

the computation of primary decomposition. The conditions on the input of these

three algorithms start with the most restrictive ones (zero-dimensional ideal with zero-

dimensional contraction to the coefficient ring) and reach the general case in the third

algorithm (noting that the coefficient ring is a PID in the last two algorithms). And

each of these algorithms uses the previous algorithms in it. Finally, in §4.5 of this

chapter, we discuss how the given algorithms also compute the associated primes of

3



the given ideal besides the primary components. In Chapter 5, we give an outline

of the algorithms developed by Eisenbud et al. in [4] together with the analysis of

how these algorithms operate explaining the connections to the theorems proved in

[4]. In §5.2, we present an algorithm for computing the equidimensional hull of

a given ideal. In §5.3, we examine algorithms for computing the equidimensional

radical, the intersection of the associated primes of a given dimension, intersection of

minimal/embedded primes of a given dimension, and as a consequence an algorithm

for computing the radical of an ideal. In §5.4, we explain the procedure for finding

associated primes of a given ideal and once all associated primes are known, a primary

decomposition of the ideal can be computed.
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CHAPTER 2

PRIMARY DECOMPOSITION OF IDEALS AND BASIC PROPERTIES

2.1 Introduction

In this chapter, we will discuss the general properties of primary decomposition of

ideals. Mostly, we will benefit from [10] and occasionally from [5] and [6]. For

completeness, we include basic theorems related to the thesis. Throughout, R will be

a commutative ring with identity.

Definition 2.1.1. An ideal I in a ring R is called primary if I 6= R and if ab ∈ I ,

then either a ∈ I or bn ∈ I for some n > 0. Equivalently, I is primary if and only if

R/I 6= 0 and every zero divisor in R/I is nilpotent.

We can easily deduce that every prime ideal is primary. Moreover, the contraction of

a primary ideal is primary, too.

Proposition 2.1.2. Let I be a primary ideal in a ring R. Then
√
I is the smallest

prime ideal containing I .

Proof. First, we show that
√
I is prime whenever I is primary. Let ab ∈

√
I . Thus,

(ab)k ∈ I for some k > 0. Since I is primary, we have ak ∈ I or (bk)n ∈ I for some

n > 0. Therefore, a ∈
√
I or b ∈

√
I. Secondly,

√
I =

⋂
I⊂P, P prime P and

√
I is

prime implies
√
I is the smallest prime ideal containing I . (I ⊂ P and P is prime

implies
√
I ⊂ P , since xn ∈ I ⊂ P implies x ∈ P , where n > 0).

Definition 2.1.3. Let I be a primary ideal of the ring R. If
√
I = Q, then I is said to

be a Q-primary ideal where Q is prime.

5



Proposition 2.1.4. If
√
I ⊂ R is a maximal ideal, then I is primary. Moreover, the

powers of a maximal ideal M are M -primary.

Proof. Let
√
I be a maximal ideal of R. Let xy ∈ I and x /∈

√
I . Since I ⊂

√
I , we

have xy ∈
√
I and x /∈

√
I . Since

√
I is maximal,

√
I and x generate the ring R, i.e.,

(
√
I, x) = (1). Therefore, i + rx = 1 for some i ∈

√
I and r ∈ R. If ik ∈ I , then

(i+rx)k = ik+r′x = 1k = 1 for some r′ ∈ R. Hence, y(ik+r′x) = yik+r′xy = y,

this implies y ∈ I . Therefore, I is primary. (We showed xy ∈ I and x /∈
√
I implies

y ∈ I). For the second part, let M ⊂ R be a maximal ideal. Let M s = Q for some

s > 0. If a ∈ M , then as ∈ M s = Q which clearly implies a ∈
√
Q, i.e., M ⊂

√
Q.

Since Q = M s ⊂ M , we have 1 /∈ Q, hence 1 /∈
√
Q and

√
Q 6= R. M ⊂

√
Q 6= R

and M is maximal implies M =
√
Q, hence Q is primary by the first part of the

proposition.

Lemma 2.1.5. If the ideals Qi ⊂ R are P -primary for 1 ≤ i ≤ n, then Q =
⋂n
i=1Qi

is P -primary.

Proof. Clearly,
√
Q =

√⋂n
i=1Qi =

⋂n
i=1

√
Qi = P . Let ab ∈ Q and a /∈ Q. Then

a /∈ Qi for some i. Since ab ∈ Qi, and a /∈ Qi, and Qi is primary, we get bn ∈ Qi.

So, b ∈
√
Qi = P =

√
Q. Hence, Q is primary.

Lemma 2.1.6. Let Q be a P -primary ideal, r ∈ R. Then

1. if r ∈ Q, then (Q : r) = (1),

2. if r /∈ Q, then (Q : r) is a P -primary ideal, hence
√

(Q : r) = P ,

3. if r /∈ P , then (Q : r) = Q.

Proof. (i) and (iii) are straightforward from definitions. To prove (ii), let a ∈√
(Q : r), hence ak ∈ (Q : r) for some k > 0. Thus, akr ∈ Q. By assump-

tion, r /∈ Q, hence (ak)n ∈ Q for some n > 0 since Q is primary. Therefore,

a ∈
√
Q = P . Conversely, if x ∈

√
Q = P , then xk ∈ Q. Hence, for r /∈ Q,

we have xkr ∈ Q which implies xk ∈ (Q : r), hence x ∈
√

(Q : r). This

shows
√

(Q : r) = P . To show that (Q : r) is primary, let ab ∈ (Q : r) and

a /∈
√

(Q : r) = P . Thus, abr ∈ Q and a /∈
√
Q implies ak /∈ Q for all k > 0.

6



Hence, br ∈ Q (since Q is primary). Hence, b ∈ (Q : r) proving (Q : r) is pri-

mary.

Definition 2.1.7. Given an ideal I ⊂ R, if it is possible to express I as an intersection

of primary ideals such that I =
⋂n
j=1Qj where Qj are Pj-primary, then I is said to

have a primary decomposition. If in addition, all Pj are distinct and Qj 6⊃
⋂
i 6=j Qi

for 1 ≤ i ≤ n, then this decomposition is called irredundant (or minimal).

Note that, not every ideal has such a decomposition. If it does, then it is called a

decomposable ideal. In this thesis, we consider ideals in Noetherian rings, thus they

have a primary decomposition by Theorem 7.13 on pg. 83 of [10]. Furthermore, we

can reduce any decomposition to an irredundant one by using Lemma 2.1.5 and by

excluding Qj from the decomposition if Qj ⊃
⋂
i 6=j Qi.

Theorem 2.1.8. (First uniqueness theorem). Let I be a decomposable ideal, let I =⋂n
i=1 Ii be an irredundant primary decomposition of I . Let Qi =

√
Ii for 1 ≤ i ≤ n.

Then Qi are exactly the prime ideals which appear in the set of ideals
√

(I : r) for

some r ∈ R, hence are independent of the particular decomposition of I .

Proof. Let a ∈ R, then (I : a) = (
⋂n
i=1 Ii : a) =

⋂n
i=1(Ii : a). This implies√

(I : a) =
⋂n
i=1

√
(Ii : a) =

⋂
a/∈Ii

√
Ii by Lemma 2.1.6. We have

√
Ii prime,

however
⋂n
i=1

√
Ii need not be prime. If it is prime, then by Proposition 1.11 on pg.8

of [10], we have
√

(I : a) =
√
It = Qt for some 1 ≤ t ≤ n. On the other hand,

since the decomposition is irredundant, for any i we have at least one element qi /∈ Ii
whereas qi ∈

⋂
i 6=j Ij . Therefore,

√
(I : qi) =

⋂n
j=1

√
(Ij : qi) =

√
Ii by Lemma

2.1.6.

Together with Lemma 2.1.6, the proof of Theorem 2.1.8 indicates that for any i, there

is an element ri ∈ R such that (I : ri) is Qi-primary. Furthermore, if we regard R/I

as anR-module, Theorem 2.1.8 amounts to stating that theseQi are exactly the prime

ideals which are the radicals of the annihilators of the elements of R/I .

Definition 2.1.9. For a decomposable ideal I ⊂ R, if I =
⋂n
i=1 Ii is an irredundant

primary decomposition and
√
Ii = Qi, then Qi are called associated primes of I (or

belong to I). The minimal elements of the set {Q1, . . . , Qk} are called the minimal

7



(or isolated) prime ideals that are associated with I , the other associated prime ideals

are called the embedded prime ideals.

Remarks: The terms isolated and embedded have origins in geometry. If k is a field

and R = k[x1, . . . , xn], then the ideal I ⊂ R induces a variety V (I) ⊂ kn. Moreover,

there is a correspondence between the minimal primes Qi of I and the irreducible

components of V (I). Also, the embedded primes of I correspond to some subvari-

eties of the irreducible components of V (I).

For an irredundant primary decomposition of I =
⋂n
i=1 Ii, we have

V (I) = V (
n⋂
i=1

Ii) =
n⋃
i=1

V (Ii) =
n⋃
i=1

V (
√
Ii).

Here,
√
Ii is prime for all i, hence V (

√
Ii) is an irreducible variety. Let Q1, . . . , Qt,

(t ≤ n) where Qi =
√
Ii be the minimal primes (isolated primes) of I . For j > t,

we have Qj ⊃ Qij for some ij ≤ t by the minimality of Q1, . . . , Qt, hence V (Qj) ⊂
V (Qij). Therefore, V (I) =

⋃n
i=1 V (Qi) =

⋃t
i=1 V (Qi) where V (Q1), . . . , V (Qt)

are the irreducible components of V (I). In addition, the primary components Ii might

not be independent of the decomposition. However, the primary components whose

radicals are the minimal primes (isolated primes) of I are unique as we will state

below.

Proposition 2.1.10. The ideal I is primary if and only if it has only one associated

prime ideal.

Proof. Consider the primary decomposition I = I , and use the uniqueness of the

list of associated primes. For the converse, if there is a single associated prime, then

there is a primary decomposition with a single primary component, hence the ideal is

primary.

Proposition 2.1.11. Let I be a decomposable ideal. Then any prime ideal P ⊃ I

contains a minimal prime ideal associated with I , thus the minimal prime ideals of I

are exactly the minimal elements of the set of all prime ideals containing I .

Proof. Let I =
⋂n
i=1 Ii be a primary decomposition of I . Hence, if P is a prime

ideal such that P ⊃ I =
⋂n
i=1 Ii, then P =

√
P ⊃

⋂n
i=1

√
Ii =

⋂n
i=1 Qi. Thus, by
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Proposition 1.11 in [10] on pg.8 (or prime avoidance lemma), we have P ⊃ Qj for

some j. Therefore, P contains a minimal prime ideal associated with I .

Proposition 2.1.12. Let I ⊂ R be a decomposable ideal such that
⋂n
i=1Qi is an

irredundant primary decomposition of I , let
√
Qi = Pi. Then

n⋃
i=1

Pi = {r ∈ R | (I : r) 6= I}.

In particular, if the zero ideal is decomposable, the set D of zero divisors of R is the

union of the prime ideals associated to (0).

Proof. We have I ⊂
⋃n
i=1Qi ⊂

⋃n
i=1 Pi, hence for r ∈ I , (I : r) = R 6= I . For the

second part, since I is decomposable, (0̄) is decomposable inR/I , i.e., (0̄) =
⋂n
i=1 Q̄i

where Q̄i is the image of the ideal Qi in R/I under projection. Thus, Q̄i is primary,

too. Hence, it suffices to prove the proposition for I = (0). On the other hand,

D =
⋃
r 6=0

√
(0 : r) by Proposition 1.15 of [10], pg.9. Therefore, for r ∈ R \ {0} we

have
√

(0 : r) =
⋂n
i=1

√
(Qi : r) =

⋂
r/∈Qj

Pj ⊂ Pj for some j, by Lemma 2.1.6.

Hence, D ⊂
⋃n
i=1 Pi. Moreover, by Theorem 2.1.8, every Pi is of the form

√
(0 : r)

for some r ∈ R. Thus,
⋃n
i=1 Pi ⊂ D.

As a result, if (0) is decomposable, we have

D = {zero divisors} =
n⋃
i=1

Pi

where Pi are the prime ideals associated with (0).

N = {nilpotent elements} =
n⋂
i=1

P̃i

where P̃i are the minimal primes associated with (0).

We now present some properties of primary decomposition related to localization all

of whose proofs can be found in [10], pp.53 - 54.

Proposition 2.1.13. Let S ⊂ R be a multiplicatively closed subset, let Q be a P -

primary ideal.
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1. If S ∩ P 6= ∅, then S−1Q = S−1R.

2. If S ∩ P = ∅, then S−1Q is S−1P -primary and its contraction in R is Q.

Therefore, the primary ideals correspond to primary ideals in the correspondence

between ideals in S−1R and contracted ideals in R.

Notation: If I ⊂ R is any ideal, and S is any multiplicatively closed subset of R, then

the contraction of the ideal S−1I in R is represented as S(I).

Proposition 2.1.14. Let S be a multiplicatively closed subset of R, let I be a decom-

posable ideal. Let I =
⋂n
i=1 Qi be an irredundant primary decomposition of I . Let

√
Qi = Pi. Suppose the Qi are numbered such that S has a nonempty intersection

with Pm+1, . . . , Pn but not with P1, . . . , Pm. Then

S−1I =
m⋂
i=1

S−1Qi and S(I) =
m⋂
i=1

Qi

where both are irredundant primary decompositions.

Definition 2.1.15. Let Ω be a set of prime ideals associated with an ideal I ⊂ R. Ω

is called isolated in case it satisfies the following. If P̃ is a prime ideal associated

with I and P̃ ⊂ P for some P ∈ Ω, then P̃ ∈ Ω.

Lemma 2.1.16. Let Ω be an isolated set of prime ideals associated with I , let S =

R −
⋃
P∈Ω P . Then S is multiplicatively closed and for any prime ideal P̃ that is

associated with I , we have

P̃ ∈ Ω implies P̃ ∩ S = ∅.

Else if P̃ /∈ Ω, then P̃ 6⊂
⋃
P∈Ω P by Proposition 1.11 (see [10], pg. 8), and thus

P̃ ∩ S 6= ∅.

Together with this lemma and Proposition 2.1.14, we conclude the following theorem.

Theorem 2.1.17. (Second uniqueness theorem). Let I ⊂ R be a decomposable ideal,

let I =
⋂n
i=1 Qi be an irredundant primary decomposition of I , let {Pi1 , . . . , Pim}

be an isolated set of prime ideals of I . Then, Qi1 ∩ · · · ∩ Qim is independent of this

decomposition.
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Corollary 2.1.18. The isolated primary components (the primary componentsQi cor-

responding to minimal prime ideals Pi) are uniquely determined by I .

Note that in general the embedded primary components are not uniquely determined

by I .

Next, we investigate the properties of the primary decomposition in Noetherian rings.

Definition 2.1.19. An ideal I ⊂ R is called irreducible if I = J ∩ K then either

I = J or I = K where J , K are ideals of R.

Lemma 2.1.20. IfR is a Noetherian ring, then every ideal ofR is a finite intersection

of irreducible ideals.

Proof. Assume not. Let Σ be the set of ideals which are not finite intersection of

irreducible ideals. Hence, Σ is nonempty. Since R is Noetherian, Σ has a maximal

element, say Q. We complete the proof by obtaining a contradiction by showing

Q /∈ Σ. First, Q is not irreducible, otherwise Q is an intersection of one irreducible

ideal (Q = Q). Hence, Q = J ∩K for ideals Q ( J , Q ( K. By maximality of Q,

we get J /∈ Σ, K /∈ Σ. Then J and K are intersections of finitely many irreducible

ideals, and hence so is Q = J ∩K contradicting Q ∈ Σ.

Lemma 2.1.21. If R is a Noetherian ring, then every irreducible ideal is primary.

Proof. Let I be an irreducible ideal in R. There is no difference between studying

on the actual ring R or the quotient ring R/I . Hence, we can assume I = (0). Let

ab ∈ (0). Thus, ab = 0. Suppose b 6= 0. To show an = 0 for some n > 0,

let (0 : a) = Ann(a) ⊂ Ann(a2) ⊂ · · · ⊂ Ann(ak) ⊂ · · · be a chain of ideals.

Since R is Noetherian, this chain stabilizes after some n > 0. Hence, Ann(an) =

Ann(an+1) = · · · . Now, we need to show (an) ∩ (b) = (0). Let xan = yb, hence

xan+1 = yab = 0. Thus, x ∈ Ann(an+1) = Ann(an). Therefore, xan = 0 which

proves (an) ∩ (b) = (0). We assumed (0) was irreducible, thus either (an) = (0) or

(b) = (0). Since b 6= 0, we get (an) = (0), therefore an = 0 which implies (0) is

primary.

Last two lemmas imply the following result.
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Theorem 2.1.22. If R is a Noetherian ring, then every ideal has a primary decompo-

sition.

As a result, the properties we proved above about decomposable ideals are valid for

all ideals in Noetherian rings.

Proposition 2.1.23. LetR be a Noetherian ring. Then every ideal I contains a power

of its radical.

Proof. Let
√
I = 〈a1, . . . , as〉. Let akii ∈ I for 1 ≤ i ≤ s. If we let q = Σs

i=1(ki−1)+

1, then (
√
I)q is generated by monomials of the form am1

1 · · · ams
s where Σs

i=1mi = q.

Therefore, mj ≥ kj for at least one j which implies that the above monomials are in

I . Hence, (
√
I)q ⊂ I for some q > 1.

Corollary 2.1.24. Let R be a Noetherian ring. Then the nilradical (the intersection

of its prime ideals) is nilpotent.

Proof. Let I = (0) in Proposition 2.1.23.

Corollary 2.1.25. Let R be a Noetherian ring, M be a maximal ideal in R. Let Q be

any ideal in R. Then the following are equivalent.

1. Q is M -primary.

2.
√
Q = M .

3. Mk ⊂ Q ⊂M for some k > 0.

Proof. (i) implies (ii) by definition. (ii) implies (iii) by Proposition 2.1.23. (iii)

implies (i) by taking the radicals of (ii) and having
√
Mk = M =

√
M .

Proposition 2.1.26. Let I 6= (1) be an ideal in a Noetherian ring R. Then the prime

ideals associated with I are exactly the prime ideals which appear in the set of ideals

(I : r) for some r ∈ R.

Proof. If (I : r) is prime, then it is radical, hence (I : r) =
√

(I : r). Thus (I : r)

is an associated prime by Theorem 2.1.8. Conversely, assume that I =
⋂
Qi where
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Qi are Pi-primary (an irredundant primary decomposition). Let Ii =
⋂
i 6=j Qj . Let

a ∈ Ii and let a /∈ I (such an a exists by the irredundancy of the decomposition).

Thus, I ⊂ (I : a) =
⋂

(Qj : a) ⊂ (Qi : a) ⊂ Pi since a /∈ Qi and Qi is Pi-

primary . Hence,
√

(I : a) = Pi. Therefore, P k
i ⊂ (I : a) for some k ≥ 1. Let

k be the minimal such number. Thus, P k−1
i 6⊂ (I : a). Therefore, aP k−1

i 6⊂ I .

Hence, there exists an element r such that r ∈ aP k−1
i ⊂ Ii and r /∈ I . This implies

Pi ⊂ (I : r) = (Qi : r) ⊂ Pi which yields Pi = (I : r).
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CHAPTER 3

GRÖBNER BASES

3.1 Definitions

We set our basic assumptions and notation as follows.

R is a Noetherian commutative ring with identity.

S−1R = {r/s | s ∈ S, r ∈ R} is the ring of fractions of R with respect to S where S

is a multiplicatively closed subset of R.

Rf = S−1R is the localization of R at f where f ∈ R and S = { fn | n ∈ Z, n ≥ 0}.

RP = S−1R is the localization of R at P where S = R − P and P ⊂ R is a prime

ideal of R.

I : J = {a ∈ R | aJ ⊂ I} is the ideal quotient of I by J where I and J are ideals in

R.

√
I = {a ∈ R | am ∈ I for some positive integerm} is the radical of the ideal I ⊂ R.

When we say that an ideal I is given, we mean that we are explicitly given a finite set

of generators for this ideal.

For the polynomial ring R[x1, . . . , xn], we can abbreviate the notation as R[x] :=

R[x1, . . . , xn] and we denote the monomial xα(1)
1 x

α(2)
2 · · ·xα(n)

n by xα where α =

(α(1), . . . , α(n)) ∈ Nn is the multi-degree of the monomial. We will use the terms

multi-degree and degree interchangeably.

Definition 3.1.1. If the following holds, we say that linear equations are solvable in

R.
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• For any given r, r1, . . . , rk ∈ R, it is possible to decide if r ∈ (r1, . . . , rk)R

or not where (r1, . . . , rk)R is the ideal generated by {r1, . . . , rk} in R and if

r ∈ (r1, . . . , rk)R, it is possible to find s1, . . . , sk ∈ R such that r =
∑
siri.

(i.e. ideal membership problem is solvable in R).

• For any given r1, . . . , rk ∈ R, it is possible to find a finite set of generators for

the R-module {(s1, . . . , sk) ∈ Rk |
∑
siri = 0}.(i.e. syzygies are computable

over R).

Throughout, we assume that linear equations are solvable in the ring R.

Definition 3.1.2. A total order > on Nk is compatible with the semigroup structure if

the following holds:

• A ≥ 0 for all A ∈ Nk where 0 denotes the tuple (0, . . . , 0) ∈ Nk.

• A > B implies A+ C > B + C for all A, B, C ∈ Nk.

Definition 3.1.3. For a compatible total order> on Nk we define the monomial order

> on R[x] = R[x1, . . . , xk] by xα > xβ if α > β in Nk.

We fix a compatible order > on Nk which induces a monomial order on R[x] =

R[x1, . . . , xk]. Such an order is necessarily a well-ordering [18], i.e., every nonempty

subset of monomials has a least element. Equivalently, every descending sequence of

monomials stabilizes after finitely many steps.

Definition 3.1.4. We can write any non-zero f ∈ R[x] = R[x1, . . . , xn] as

f = cxA + f̄

where c ∈ R, c 6= 0, and A > A′ for every nonzero term c′xA
′
of f̄ . According to this,

we set

lt(f) = cxA, the leading term of f .

lc(f) = c, the leading coefficient of f .

deg(f) = A, the degree (multidegree) of f .
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If G ⊂ R[x] is any subset, then we define Lt(G) = the ideal generated by the set

lt(G) := {lt(g) | g ∈ G}, i.e. the leading term ideal of G.

Moreover, lt(0) = lc(0) = 0 and deg(0) = −∞ by convention.

Definition 3.1.5. f ∈ R[x] is called reducible modulo G ⊂ R[x] if f is nonzero and

lt(f) ∈ Lt(G). Otherwise, f is called reduced modulo G.

Note that this definition is rather different from the ones about polynomial reducibil-

ity.

Proposition 3.1.6 (Reduction Algorithm). Let f ∈ R[x] = R[x1, . . . , xn] and G =

{g1, . . . , gm} ⊂ R[x]. It is possible to construct f ′ as f ≡ f ′ mod(g1, . . . , gm)R[x]

where f ′ is reduced modulo G.

Proof. By Definition 3.1.1, given G = {g1, . . . , gm} ⊂ R[x], we can decide whether

f ∈ R[x] is reducible modulo G or not as follows.

Let lt(f) = cxα and lt(gi) = cix
αi . Without loss of generality, we may assume

α ≥ αi for 1 ≤ i ≤ r and α < αi for r < i ≤ m for some r.

f is reducible modulo G if and only if there are a1, a2, . . . , ar such that

lt(f) = cxα =
r∑
i=1

aix
α−αilt(gi) =

r∑
i=1

aix
α−αicix

αi .

That is, f is reducible modulo G if and only if lc(f) = c ∈ (c1, . . . , cr)R which is

decidable by Definition 3.1.1 (note that by assumption, linear equations are solvable

in R), and we can compute a1, . . . , ar if they exist. In this case, we have lt(f) =∑r
i=1 aix

α−αilt(gi).

Suppose f is not reducible, i.e., f is reduced. Then, we can take f ′ = f and the

proposition holds in this case.

Suppose f is reducible. Then as above, we can find a1, a2, . . . , ar such that lt(f) =∑r
i=1 aix

α−αilt(gi). Let f1 = f −
∑r

i=1 aix
α−αigi. Note that, the leading term of∑r

i=1 aix
α−αigi cancels the leading term of f . Therefore, deg(f) > deg(f1) and we

have f ≡ f1 modulo(g1, . . . , gm)R[x]. By induction on the degree of polynomials in
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the monomial order>, we can find a reduced f ′ where f ′ ≡ f1 mod(g1, . . . , gm)R[x].

However, f ≡ f1, therefore f ≡ f ′ mod(g1, . . . , gm)R[x].

Definition 3.1.7 (Gröbner basis). A subset G of an ideal I where I ⊂ R[x] =

R[x1, . . . , xn] is a Gröbner basis for I if Lt(G) = Lt(I). Namely, if every nonzero

element of I is reducible modulo G. G is called a minimal Gröbner basis if every

g ∈ G is nonzero and reduced modulo G− {g}.

If lt(g) ∈ Lt(G−{g}), that is, if g is reducible moduloG−{g}, then Lt(G−{g}) =

Lt(G). Thus, if G is a Gröbner basis for I , then G − {g} is a Gröbner basis for I ,

too. In fact, we can convert any Gröbner basis to a minimal one by eliminating the

elements which are reducible modulo others.

The next proposition is about the crucial property of Gröbner bases.

Proposition 3.1.8 (Proposition 2.7. in [13]). Let G be a Gröbner basis for I ⊂ R[x].

Then, f ∈ I if and only if applying the reduction algorithm in Proposition 3.1.6 to f

returns 0.

Proof. Let f ∈ I and let f ≡ f ′ mod(g1, . . . , gm)R[x] where G = {g1, . . . , gm} and

f ′ is reduced moduloG. (Note that such an f ′ can be computed by Proposition 3.1.6).

Since G is a Gröbner basis for I , G ⊂ I . Hence, f ′ − f ∈ (g1, . . . , gm)R[x] ⊂ I and

f ∈ I imply that f ′ ∈ I . If f ′ 6= 0, then Lt(G) = Lt(I) and f ′ ∈ I imply that f ′

is reducible modulo G which contradicts f ′ is reduced modulo G. Therefore f ′ = 0.

Conversely, let f ≡ 0 mod(g1, . . . , gm)R[x], so f =
∑m

i=1 αigi for some αi ∈ R[x]

which implies f ∈ I .

Corollary 3.1.9 (Corollary 2.8. in [13]). If G is a Gröbner basis for I , then ideal

membership in I is decidable. That is, using G we can determine whether a given f

in R[x] is in I or not.

Proof. Let f ∈ R[x] and G = {g1, . . . , gm} be a Gröbner basis for I . By Proposition

3.1.6 we can compute f ′ ∈ R[x] such that f ≡ f ′ mod(g1, . . . , gm)R[x] and f ′ is

reduced modulo G. By Proposition 3.1.8, f ∈ I if and only if f ′ = 0.

Corollary 3.1.10 (Corollary 2.9. in [13]). If G is a Gröbner basis for I , then G

generates I .

18



Proof. Let G = {g1, . . . , gm} be a Gröbner basis for the ideal I ⊂ R[x] where

R[x] = R[x1, . . . , xn]. By Definition 3.1.7, G ⊂ I , hence (g1, . . . , gm)R[x] ⊂ I .

Let f ∈ I . Then, by Proposition 3.1.8, f ≡ 0 mod(g1, . . . , gm)R[x], which means

f ∈ (g1, . . . , gm)R[x]. Therefore, I ⊂ (g1, . . . , gm)R[x] which proves the corol-

lary.

Proposition 3.1.11. Every ideal I in R[x1, . . . , xn] has a finite Gröbner basis.

Proof. Let I be an ideal inR[x1, . . . , xn], then Lt(I) is also an ideal inR[x1, . . . , xn].

By Hilbert Basis Theorem, Lt(I) has a finite basis {h1, . . . , hs} ⊂ R[x1, . . . , xn].

Since hi ∈ Lt(I) for all i, we can write hi =
∑Ni

j=1 aijlt(fij) for some aij ∈
R[x1, . . . , xn] and fij ∈ I . Let G = {g1, . . . , gt} = {fij | 1 ≤ i ≤ s, 1 ≤ j ≤ Ni}.
Since each hi ∈ Lt(G), we get Lt(I) = (h1, . . . , hs)R[x] ⊂ Lt(G). Also, G ⊂ I

implies Lt(G) ⊂ Lt(I). This proves Lt(G) = Lt(I). Since G ⊂ I , G is a Gröbner

basis for I .

Corollary 3.1.12 (Corollary 2.10. in [13]). If I ⊂ J are ideals in R[x] and Lt(I) =

Lt(J), then I = J .

Proof. Let G be a Gröbner basis for I , then G ⊂ I and Lt(G) = Lt(I) = Lt(J).

I ⊂ J implies G ⊂ J . Since Lt(J) = Lt(G), G is also a Gröbner basis for J . Since

G is Gröbner basis of both I and J , this implies G generates I , and G generates J by

Corollary 3.1.10. Thus I = J .

Proposition 3.1.13 (Proposition 2.11. in [13]). One can compute a Gröbner basis for

an ideal I in R[x] from any given set of generators of I .

Proof. We can find proof in [15] and [18].

Due to Hilbert Basis Theorem (see [3], pg.75-80), we proved the existence of a Gröb-

ner basis in Proposition 3.1.11 above. For k[x1, . . . , xn] where k is a field, we can

compute a Gröbner basis for I from a given set of generators using Buchberger’s

Algorithm (see [3] pg.88-95, [1]). In the more general case where R is a Noethe-

rian ring in which linear equations are solvable, there is an algorithm to compute a

Gröbner basis of I given in [15, 18].
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3.2 Operations on Ideals

We can use Gröbner bases to do basic operations on ideals inR[x]. We build following

structures which rely on an investigation by [14] that if Gröbner bases are computed

according to the lexicographical order on monomials, then they have the effect of

eliminating the more “basic” variables. Below is the proposition that defines this

property in a detailed fashion.

Proposition 3.2.1 (Proposition 3.1. in [13]). Let I be an ideal in R[y, x] such that

R[y, x] = R[y1, . . . , yn, x1, . . . , xm]. Let >1 and >2 be two orders on monomials in x

and y respectively. Define an order> by xAyB > xA
′
yB
′
if xA >1 x

A′ , or if xA = xA
′

and yB >2 y
B′ . Let G ⊂ R[y, x] be a Gröbner basis for I with respect to >. Then we

have,

1. G is a Gröbner basis for I with respect to the order >1 on (R[y])[x], i.e, on the

polynomial ring in x1, . . . , xm with coefficients in R[y].

2. G∩R[y] is a Gröbner basis for I ∩R[y] with respect to the order >2 (Gröbner

basis of the elimination ideal).

Proof. (i) We begin with the following claim.

Claim 1: lt>(lt>1(f)) = lt>(f) for any f ∈ R[x, y].

Proof of Claim 1: To find lt>1(f), we order the terms of f comparing the components

containing x. Afterwards, the biggest component has a coefficient that is a polynomial

in y. Thus, if we order that polynomial with respect to >2, then we get the leading

term of f with respect to > which proves the claim.

Let G = {g1, . . . , gt} be a Gröbner basis for I with respect to the order >. For

each gi ∈ G, by the above claim, we have lt>(gi) = lt>(lt>1(gi)). Thus, lt>(gi) ∈
Lt>(Lt>1(G)), which implies Lt>(G) ⊂ Lt>(Lt>1(G)). Hence,

Lt>(I) = Lt>(G) ⊂ Lt>(Lt>1(G)) ⊂ Lt>(Lt>1(I)) (3.1)

since G ⊂ I . We continue with the following claim.

Claim 2: Lt>(Lt>1(I)) ⊂ Lt>(I).
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Proof of Claim 2: Let G1 = {k1, . . . , ks} be a Gröbner basis for I with respect

to the order >1. So, I = 〈k1, . . . , ks〉 where ki ∈ I for all i and Lt>1(I) =

〈lt>1(k1), . . . , lt>1(ks)〉. Let f ∈ Lt>1(I), then f =
∑

i hi(x, y)lt>1(ki) where

hi(x, y) ∈ R[x, y] for all i (since G1 is a Gröbner basis of I with respect to >1,

i.e., Lt>1(I) = Lt>1(G1)). Let lt>1(ki) = pi(y)xαi . Thus, f =
∑

i hi(x, y)pi(y)xαi .

Let lt>1(f) have degree A. So,

lt>1(f) =
∑

i qi(y)xA−αipi(y)xαi where qi(y)xA−αi is the term of hi with degree

(A− αi) in x. Hence,

lt>1(f) = lt>1(
∑
i

qi(y)xA−αiki) = lt>1(F )

where F =
∑

i qi(y)xA−αiki ∈ I since I = 〈k1, . . . , ks〉. Therefore, lt>(f) =

lt>(lt>1(f)) = lt>(lt>1(F )) = lt>(F ) ∈ Lt>(I) which proves the claim.

As a result of Claim 2 and Eq.(3.1), we get

Lt>(I) = Lt>(G) = Lt>(Lt>1(G)) = Lt>(Lt>1(I)).

By Corollary 3.1.12, Lt>(Lt>1(I)) = Lt>(Lt>1(G)) implies Lt>1(I) = Lt>1(G)

which proves (i).

(ii) By definition of> in the ringR[y, x], terms involving only yi variables are smaller

than the ones involving any xi variable. Hence, if a polynomial has a leading term in

y, then none of its terms can involve any xi variable, i.e., lt>(g) ∈ R[y] if and only if

g ∈ R[y].

Let G = {g1, . . . , gu, gu+1, . . . , gt} be a Gröbner basis of I such that G ∩ R[y] =

{g1, . . . , gu}. I ∩ R[y] is an ideal of R[y] and we have G ∩ R[y] ⊂ I ∩ R[y]. To

prove that G ∩R[y] is a Gröbner basis of I ∩R[y] with respect to >2, we must show

lt>2(f) ∈ Lt>2(G ∩ R[y]) for all f ∈ I ∩ R[y]. If f ∈ I ∩ R[y], then lt>2(f) =

lt>(f) =
∑t

i=1 pi(x, y)lt>(gi) since G is a Gröbner basis of I and f ∈ I . (Note that

> and >2 coincide on R[y]. Hence, lt>(gi) = lt>2(gi) for i = 1, . . . , u). If we write

pi(x, y) = qi(x, y) + ai(y) where qi(x, y) consists of terms of pi(x, y) involving at
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least one xj variable, then we get

lt>2(f) =
t∑
i=1

(qi(x, y) + ai(y))lt>(gi)

=
u∑
i=1

ai(y)lt>2(gi) +
u∑
i=1

qi(x, y)lt>2(gi) +
t∑

i=u+1

pi(x, y)lt>(gi)

=
u∑
i=1

ai(y)lt>2(gi) ∈ Lt>2(G ∩R[y])

since the terms involving at least one xj variable are collected in the last two sigma

summations and they add up to zero (as the left hand side is in R[y]). Therefore,

Lt>2(f) ∈ Lt>2(G ∩R[y]) which proves (ii).

We review applications of Gröbner bases in computations regarding basic ideal oper-

ations.

Proposition 3.2.2 (Computing intersection of ideals). Let I and J be given ideals in

R[x] = R[x1, . . . , xn]. Then I∩J can be computed. In other words, we can determine

a finite basis of I ∩ J when finite bases of I and J are given.

Proof. Let I and J be ideals in R[x]. We start with a claim.

Claim: I ∩ J = (tI + (1− t)J) ∩R[x] where t is a new variable.

Proof of Claim: tI + (1− t)J is the ideal of R[x, t] = R[x1, . . . , xn, t] generated by

all tf and (1− t)g where f ∈ I and g ∈ J .

Let f ∈ I ∩ J . So, f ∈ I implies tf ∈ tI . Also, f ∈ J implies (1− t)f ∈ (1− t)J .

Therefore, f = tf+(1−t)f ∈ tI+(1−t)J . Hence, we have f ∈ (tI+(1−t)J)∩R[x].

Now, let f ∈ (tI + (1− t)J) ∩R[x]. Then, we can write f as

f =
N∑
i=1

ki(x, t)tli(x) +
M∑
j=1

k̄j(x, t)(1− t)l̄j(x)

for some li ∈ I and l̄j ∈ J . Note that, f ∈ R[x, t] and f has no terms involving t.

Substituting t = 0 we get f(x) = 0 +
∑M

j=1 k̄j(x, 0)l̄j(x) ∈ J . Similarly, substituting

t = 1 we get f =
∑N

i=1 ki(x, 1)li(x) + 0 from above, hence, f ∈ I . Therefore,

f ∈ I ∩ J which proves the claim.
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By this claim and the elimination theorem (see, Proposition 3.2.1(ii)), we get an al-

gorithm for computing intersection of ideals.

If we let I = 〈f1, . . . , fk〉, and J = 〈g1, . . . , gm〉 be ideals in R[x1, . . . , xn], then we

can compute a Gröbner basis G for the ideal tI + (1 − t)J = 〈tf1, . . . , tfk, (1 −
t)g1, . . . , (1 − t)gm〉 ⊂ R[x1, . . . , xn, t] with respect to the lexicographical order

where t > xi for all i. The elements of this Gröbner basis G that do not contain

the variable t form a Gröbner basis of the ideal (tI + (1− t)J) ∩R[x] = I ∩ J (that

is, G ∩R[x] is a Gröbner basis of I ∩ J).

Proposition 3.2.3 (Computing ideal quotients). Let I and J be given ideals inR[x] =

R[x1, . . . , xn]. Then I : J can be computed provided the generators of J are not zero

divisors.

Proof. Let I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gk〉 be ideals in R[x]. We first prove a

claim.

Claim 1: I : J = I : 〈g1, . . . , gk〉 =
⋂k
i=1 I : 〈gi〉.

Proof of Claim 1: I : 〈g1, . . . , gk〉 = {f ∈ R[x] | fg ∈ I for all g ∈ 〈g1, . . . , gk〉}.
If f ∈ I : 〈g1, . . . , gk〉, then for each g = higi where hi ∈ R[x], we get fhigi ∈ I
since higi ∈ 〈g1, . . . , gk〉. Thus, f ∈ I : 〈gi〉 for all i ∈ {1, . . . , k} which implies

f ∈
⋂k
i=1 I : 〈gi〉. Conversely, if f ∈

⋂k
i=1 I : 〈gi〉, then fhigi ∈ I for all i and

hi ∈ R[x]. Hence, if g ∈ 〈g1, . . . , gk〉, then g = h1g1 + · · · + hkgk where hi ∈ R[x].

Therefore, fg = fh1g1 + · · ·+ fhkgk ∈ I which shows f ∈ I : 〈g1, . . . , gk〉 and this

proves the claim.

As a result, if we can compute each I : 〈gi〉 then we can compute I : J .

Claim 2: Let {h1, . . . , hs} be a a basis of I ∩ 〈gi〉. Then a basis of I : 〈gi〉 is given by

{h1/gi, . . . , hs/gi} provided that gi is not a zero divisor.

Proof of Claim 2: Note that, we can compute {h1, . . . , hs} by Proposition 3.2.2. Since

gi(hj/gi) = hj ∈ I , we have 〈h1/gi, . . . , hs/gi〉 ⊂ I : 〈gi〉. Now, let f ∈ I : 〈gi〉.
Then, fgi ∈ I and fgi ∈ 〈gi〉 which means fgi ∈ I ∩ 〈gi〉. We can write fgi =

a1h1 + · · · + ashs for some aj ∈ R[x] which gives f = a1(h1/gi) + · · · + as(hs/gi)

since each hj is divisible by gi (as hj ∈ 〈gi〉) and gi is not a zero divisor. This shows
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I : 〈gi〉 ⊂ 〈h1/gi, . . . , hs/gi〉 which gives the equality and proves the claim.

After computing a basis for each I : 〈gi〉 as in Claim 2, we can compute I : J as the

intersection of these ideals using Proposition 3.2.2.

Proposition 3.2.4 (Computing the kernel of a homomorphism). Let I be an ideal

in R[x1, . . . , xn]. Then the kernel of a given homomorphism φ : R[y1, . . . , ym] →
R[x1, . . . , xn]/I can be computed.

Proof. Let φ : R[y] → R[x]/I be a homomorphism given by φ(yi) = fi + I where

fi ∈ R[x] for i ∈ {1, . . . ,m}.

Claim: J = (y1− f1, . . . , ym− fm, I)R[x, y]∩R[y] is the kernel of the above homo-

morphism φ.

Proof of Claim: Suppose I = 〈G1, . . . , Gk〉 and F ∈ J where F = F (y1, . . . , ym).

Then,

F = H1(x, y)(y1 − f1) + · · ·+Hm(x, y)(ym − fm) +
k∑
j=1

Lj(x, y)Gj

for some Hi(x, y) ∈ R[x, y] and Lj(x, y) ∈ R[x, y]. Note that, since F is a polyno-

mial and φ(yi) = fi+I for the homomorphism φ, we have φ(F ) = F (f1, . . . , fm)+I .

Thus,

φ(F ) = (
m∑
i=1

Hi(x1, . . . , xn, f1, . . . , fm)(fi − fi)+

k∑
j=1

Lj(x1, . . . , xn, f1, . . . , fm)Gj) + I

= 0 + (
k∑
j=1

Lj(x1, . . . , xn, f1, . . . , fm)Gj) + I = 0 + I.

Since
∑k

j=1 Lj(x1, . . . , xn, f1, . . . , fm)Gj ∈ I . Therefore, F ∈ Ker(φ).

Conversely, let F ∈ Ker(φ). So, φ(F ) ≡ 0 in R[x]/I . Here, F = F (y1, . . . , ym) ∈
R[y]. Hence, φ(F ) = F (f1, . . . , fm) ∈ I .
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We can write, F (y1, . . . , ym) = F ((y1− f1) + f1, . . . , (ym− fm) + fm). If we take a

term of F , we have

ciy
α1
1 · · · yαm

m = ci(y1 − f1 + f1)α1 · · · (ym − fm + fm)αm

where ci ∈ R. After binomial expansion, this term becomes (
∑N

i=1Hi(x)(y1 −
f1)βi1 · · · (ym − fm)βim) + cif

α1
1 · · · fαm

m where (βi1, . . . , βim) 6= (0, . . . , 0).

As a result, F (y1, . . . , ym) = G(x, y) + F (f1, . . . , fm) where, G(x, y) ∈ 〈y1 −
f1, . . . , ym − fm〉. Since F (f1, . . . , fm) ∈ I , we obtain F ∈ (y1 − f1, . . . , ym −
fm, I)R[x, y] ∩R[y] = J , hence Ker(φ) ⊂ J which proves the claim and the propo-

sition.

Note that, J is computable since by using a lex order where xi > yj for all i and j,

we can compute the elimination ideal (y1 − f1, . . . , ym − fm, I)R[x, y] ∩ R[y] using

Proposition 3.2.1.

Corollary 3.2.5 (Computing the ideal of polynomial relations among polynomials).

For a given set of polynomials {f1, . . . , fm} ⊂ R[x], the ideal of polynomial relations

satisfied by f1, . . . , fm can be computed.

Proof. In Proposition 3.2.4, if we take I = 〈0〉 and φ : R(y1, . . . , ym) → R[x] =

R[x]/I where φ(yi) = fi for all i, then we get h(f1, . . . , fm) = 0 if and only

if h(y1, . . . , ym) ∈ Ker(φ). Therefore, the ideal of polynomial relations among

f1, . . . , fm is exactly Ker(φ) which can be computed by Proposition 3.2.4.

Proposition 3.2.6 (Computing the saturation of an ideal at an element). For a given

ideal I in R[x], IR[x]f ∩R[x] can be computed for any nonzero divisor f ∈ R[x].

Proof. Here, R[x]f = S−1R[x] where S = {fn | n ≥ 0} and IR[x]f is the ideal

generated by I in R[x]f .

Claim: R[x]f ∼= R[x, t]/〈tf − 1〉 where f ∈ R[x], t is a new variable.

Proof of Claim: Let ϕ : R[x, t] → R[x]f be a homomorphism given by g(x, t) 7→
g(x, 1/f). ϕ is an epimorphism since we can replace every (1/f)s in h ∈ R[x]f by

ts and get a polynomial in R[x, t].
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First, we show Ker(ϕ) = 〈tf − 1〉.

Let h(x, t) ∈ 〈tf−1〉, then we have h(x, t) = g(x, t)(tf−1) where g(x, t) ∈ R[x, t].

Hence, ϕ(h(x, t)) = h(x, 1/f) = g(x, 1/f)((1/f)f−1) = 0 which implies h(x, t) ∈
Ker(ϕ).

Conversely, let h(x, t) ∈ Ker(ϕ). Let (tf − 1) - h(x, t). So, by reduction algorithm

in (R[x])[t] (see Proposition 3.1.6), we get h(x, t) = (tf − 1)g(x, t) + r(x, t) where

r(x, t) 6= 0 such that r(x, t) is reduced modulo 〈tf −1〉. Then lt(tf −1) - lt(r(x, t)),

i.e., f(x)t - lt(r(x, t)). If we let r(x, t) = a0(x)tm + a1(x)tm−1 + · · ·+ am−1(x)t+

am(x), then f(x)t - a0(x)tm implies f(x) - a0(x) if m ≥ 1.

On the other hand, h(x, 1/f) = (0)g(x, 1/f) + r(x, 1/f) = 0 implies

r(x, 1/f) = a0(x)(1/fm) + · · ·+ am−1(1/f) + am(x) = 0. In the case m ≥ 1, after

equating the denominators, f(x) divides a0(x) which contradicts the above implica-

tion. If m = 0 then r(x, 1/f) = 0 implies a0(x) = 0. Hence (tf − 1) | h(x, t) which

is again a contradiction. Thus, the claim is proven by the first isomorphism theorem.

Define ψ : R[x]→ R[x, t]/〈tf − 1〉 by ψ(g) = g + 〈tf − 1〉. ψ is a monomorphism

(g1, g2 ∈ R[x] and (tf − 1) | (g1 − g2) implies g1 = g2) and ψ(R[x]) is the isomor-

phic copy of R[x] in R[x, t]/〈tf − 1〉. If we identify R[x]f and R[x, t]/〈tf − 1〉 by

the isomorphism in the above claim, then IR[x]f is generated by all g + 〈tf − 1〉 in

R[x, t]/〈tf − 1〉 where g ∈ I (i.e., generated by ψ(I)). Hence, IR[x]f is given by

J/〈tf − 1〉 in R[x, t]/〈tf − 1〉 where J = (I, tf − 1)R[x, t]. Since ψ is a monomor-

phism, every coset in ψ(R[x]) is represented as g(x) + 〈tf − 1〉 by a unique g(x) ∈
R[x]. Therefore, IR[x]f ∩R[x] is given by J/〈tf − 1〉 ∩ψ(R[x]) in R[x, t]/〈tf − 1〉.
Let h(x, t) + 〈tf − 1〉 ∈ (J/〈tf − 1〉) ∩ ψ(R[x]), then h(x, t) ∈ J and h(x, t) =

h̄(x) + (tf − 1)k(x, t) for some k(x, t). Thus, h(x, t) + 〈tf − 1〉 = h̄(x) + 〈tf − 1〉.
Since h ∈ J and tf − 1 ∈ J we get h̄(x) ∈ J . Hence, h̄(x) ∈ J ∩ R[x]. This shows

ψ(J ∩ R[x]) = (J/〈tf − 1〉) ∩ ψ(R[x]). Therefore, since ψ is a monomorphism,

IR[x]f ∩ R[x] which is given by ψ(J ∩ R[x]) in R[x, t]/〈tf − 1〉 is isomorphic to

J ∩ R[x] in R[x]. Therefore, by the above identification, we get IR[x]f ∩ R[x] =

J ∩R[x] = (tf − 1, I)R[x, t] ∩R[x].

We can compute J ∩ R[x] by using a Gröbner basis of J with respect to a lex order
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where t > xi for all i as in Proposition 3.2.1 (ii).

In Proposition 3.2.1(ii), we saw that if G is a Gröbner basis of the ideal I ⊂ R[x, y]

with respect to the order>, thenG∩R[y] is a Gröbner basis for I∩R[y] (with respect

to the order >2). In particular G ∩ R is a basis for I ∩ R. This can be described in a

complete manner as follows.

Proposition 3.2.7 (Proposition 3.3.i in [13]). Let I be an ideal in R[x] and let ρ :

R[x]→ (R/(I ∩R))[x] be the quotient map. If G ⊂ I is a Gröbner basis for I , then

1. G ∩R generates I ∩R and ρ(G) is a Gröbner basis for ρ(I).

2. G is a minimal Gröbner basis for I if and only if G ∩ R is a minimal basis for

I ∩R, ρ(G−G∩R) is a minimal Gröbner basis for ρ(I) and ρ(lt(g)) 6= 0 for

all g ∈ (G−G ∩R).

Proof. (i) We begin with a claim.

Claim: ρ(Lt(I)) = Lt(ρ(I)).

Proof of Claim: If f =
∑N

i=1 aix
αi where ai ∈ R and αi ∈ N, then ρ(f) =∑N

i=1 āix
αi where āi ∈ R/(I∩R). Hence, either ρ(lt(f)) = 0̄ or ρ(lt(f)) = lt(ρ(f)).

Therefore, ρ(Lt(I)) ⊂ Lt(ρ(I)). Conversely, if f ∈ I , let f = f0 + f1 where

ρ(f0) = 0̄ and ρ(lt(f1)) 6= 0̄. In particular, f0 ∈ I since all coefficients of f0 are in

I∩R, hence f1 = f−f0 ∈ I and lt(ρ(f)) = lt(ρ(f1)) = ρ(lt(f1)) ∈ ρ(Lt(I)). Thus,

Lt(ρ(I)) ⊂ ρ(Lt(I)). Therefore, ρ(Lt(I)) = Lt(ρ(I)) which proves the claim.

Now, if G is a Gröbner basis for I , then by Proposition 3.2.1(ii), G ∩ R generates

I ∩ R. Since Lt(G) = Lt(I) and ρ(Lt(I)) = Lt(ρ(I)), we have Lt(ρ(I)) =

ρ(Lt(I)) = ρ(Lt(G)) ⊂ Lt(ρ(G)) ⊂ Lt(ρ(I)) implying Lt(ρ(I)) = Lt(ρ(G)).

Hence, ρ(G) is a Gröbner basis for ρ(I). Note that, if G = {g1, . . . , gs}, then

ρ(Lt(G)) = ρ(〈lt(g1), . . . , lt(gs)〉) = 〈ρ(lt(g1)), . . . , ρ(lt(gs))〉
= 〈lt(ρ(g1)), . . . , lt(ρ(gr))〉 ⊂ 〈lt(ρ(g1)), . . . , lt(ρ(gs))〉 = Lt(ρ(G)) where with-

out loss of generality, ρ(lt(gi)) = 0̄ for r < i ≤ s and ρ(lt(gj)) 6= 0̄, hence

ρ(lt(gj)) = lt(ρ(gj)) for 1 ≤ j ≤ r. Since G ⊂ I we have ρ(G) ⊂ ρ(I) which

implies Lt(ρ(G)) ⊂ Lt(ρ(I)).
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We can prove (ii) by using definitions and (i).

We can obtain ring of fractions of R[x] by using multiplicative subsets of R. Gröbner

basis has a useful property regarding this process which is as follows.

Proposition 3.2.8 (Gröbner basis of ideals in ring of fractions). Let S be a multiplica-

tively closed subset of R. If G is a Gröbner basis for an ideal I ⊂ R[x], then G is a

Gröbner basis for the ideal S−1I ⊂ (S−1R)[x].

Proof. We begin by proving the following.

Claim: Lt(S−1I) = S−1Lt(I).

Proof of Claim: Let G = {f1, . . . , fk} be a Gröbner basis for I . We have S−1I =

{f/α | α ∈ S, f ∈ I} where f/α =
∑k

i=1(hifi/α) such that α ∈ S, fi ∈ G, hi ∈
R[x]. Thus, Lt(S−1I) = 〈lt(f/α) | f ∈ I, α ∈ S〉. We know that lt(f/α) = lt(f)/α

by basic ring axioms. Hence, 〈lt(f/α) | f ∈ I, α ∈ S〉 = 〈lt(f)/α | f ∈ I, α ∈ S〉
and since α ∈ S are units in S−1R, we have 〈lt(f)/α | f ∈ I, α ∈ S〉 = 〈lt(f) | f ∈
I〉 where 〈lt(f)〉 as ideals of S−1R[x]. Thus, Lt(S−1I) = 〈lt(f) |f ∈ I〉 in S−1R[x].

Now, S−1Lt(I) = S−1〈lt(f) | f ∈ I〉 = 〈lt(f) | f ∈ I〉 = Lt(S−1I). This proves

the claim.

By definition of Gröbner basis, Lt(I) = Lt(G), hence Lt(S−1I) = S−1Lt(I) =

S−1Lt(G) = 〈lt(g) | g ∈ G〉 in S−1R[x] by above claim. This implies Lt(S−1I) =

Lt(G) in S−1R[x] which proves the result.

Now we look at an important property about the saturation ideal which relates it to

the leading term ideal.

Lemma 3.2.9 (Lemma 3.5 in [13]). Let T ⊂ S be multiplicatively closed subsets of

R, let I be an ideal in R[x]. If

S−1Lt(I) ∩R[x] = T−1Lt(I) ∩R[x]

then

S−1I ∩R[x] = T−1I ∩R[x].
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Proof. Since T ⊂ S are multiplicative subsets of R, we have R[x] ⊂ T−1R[x] ⊂
S−1R[x] as ring extensions. Moreover, T ⊂ S implies T−1(S−1R) = S−1R. Now,

we need some claims.

Claim 1: Lt(S−1I ∩ T−1R[x]) ⊂ Lt(S−1I) ∩ T−1R[x].

Proof of Claim 1: Note that Lt(S−1I∩T−1R[x]) is the leading term ideal in T−1R[x]

and we have Lt(S−1I ∩T−1R[x]) ⊂ T−1R[x]. Also, S−1I ∩T−1R[x] ⊂ S−1I which

implies Lt(S−1I ∩ T−1R[x]) ⊂ Lt(S−1I) as ideals in S−1R[x]. This proves the

claim.

Moreover, we have Lt(S−1I) ∩ T−1R[x] = S−1Lt(I) ∩ T−1R[x] by the claim in

Proposition 3.2.8.

Claim 2: S−1Lt(I) ∩ T−1R[x] = T−1(S−1Lt(I) ∩R[x]).

Proof of Claim 2: First of all, since T ⊂ S, T−1(S−1Lt(I)) = S−1Lt(I). Hence,

T−1(S−1Lt(I) ∩ R[x]) ⊂ S−1Lt(I), and clearly T−1(S−1Lt(I) ∩ R[x]) ⊂ T−1R[x]

which implies RHS ⊂ LHS. To prove LHS ⊂ RHS, let F =
∑

i

hi
si
lt(fi) ∈

S−1Lt(I) ∩ T−1R[x] where hi ∈ R[x], si ∈ S and fi ∈ I . Since F ∈ T−1R[x], F =

G/t for some G ∈ R[x], t ∈ T which gives G = tF =
∑

i

thi
si
lt(fi) ∈ S−1Lt(I).

Thus, G ∈ S−1Lt(I) ∩ R[x]. Therefore, F = G/t ∈ T−1(S−1Lt(I) ∩ R[x]). This

proves the equality of both sides.

Now, by the assumption of the lemma, T−1(S−1Lt(I) ∩ R[x]) = T−1(T−1Lt(I) ∩
R[x]).

Claim 3: T−1(T−1Lt(I) ∩R[x]) = T−1Lt(I).

Proof of Claim 3: Since Lt(I) ⊂ T−1Lt(I)∩R[x], we get RHS ⊂ LHS. And since

T−1Lt(I) ∩ R[x] ⊂ T−1Lt(I), the ideal generated by T−1Lt(I) ∩ R[x] in T−1R[x]

which equals LHS is a subset of T−1Lt(I). (The ideal generated by a subset of an

ideal is a subset of that ideal). Hence, we get LHS ⊂ RHS which proves the claim.

We have T−1Lt(I) = Lt(T−1I) by the claim in proof of Proposition 3.2.8.

Claim 4: T−1I ⊂ S−1I ∩ T−1R[x].
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Proof of Claim 4: We have T−1I ⊂ S−1I since T ⊂ S. Moreover, T−1I ⊂ T−1R[x],

too. Hence the result follows.

As a summary of all these claims and arguments, we have shown that Lt(S−1I ∩
T−1R[x]) ⊂ Lt(S−1I)∩T−1R[x] = S−1Lt(I)∩T−1R[x] = T−1(S−1Lt(I)∩R[x]) =

T−1(T−1Lt(I) ∩ R[x]) = T−1Lt(I) = Lt(T−1I) ⊂ Lt(S−1I ∩ T−1R[x]). This

proves Lt(S−1I ∩ T−1R[x]) = Lt(T−1I). Using Corollary 3.1.12, we get S−1I ∩
T−1R[x] = T−1I . If we intersect both sides withR[x], then we prove the lemma.

Remark: If we take T = {1} in the Lemma 3.2.9, then S−1I ∩ R[x] = I provided

that S−1Lt(I) ∩ R[x] = Lt(I), i.e., if Lt(I) is saturated with respect to S, then so is

I . In fact, according to this lemma, we can compute the saturation of I with respect

to S using a “smaller” multiplicative set T , in case this change of sets does not have

an effect on the leading term ideal.

Corollary 3.2.10 (Proposition 3.6 in [13]). Let S be a multiplicatively closed subset

of R, let I be an ideal in R[x]. If for some s ∈ S,

S−1Lt(I) ∩R[x] = (LT (I)Rs[x]) ∩R[x]

then

S−1I ∩R[x] = IRs[x] ∩R[x].

Proof. In Lemma 3.2.9, if we let T = {sn | n ≥ 0}, then the result follows since

T−1R[x] = Rs[x] and T−1Lt(I) = Lt(I)Rs[x] and T−1I = IRs[x].

By Corollary 3.2.6, we can compute IRs[x]∩R[x], thus we can compute S−1I∩R[x]

if we can find an s ∈ S satisfying the assumption of Corollary 3.2.10. Therefore,

Corollary 3.2.10 evolves the problem of computing the saturation S−1I ∩ R[x] of an

ideal I in R[x] to an equivalent problem for ideals generated by leading terms. The

computability of solution depends on R and S.

The localization RP at a prime ideal P ⊂ R is another issue if we let S = R − P
in aforementioned results. In the special case that the prime ideal P is principal, the

saturation of I with respect to P can be computed using the following proposition.
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Proposition 3.2.11 (Proposition 3.7 in [13]). Let R be an integral domain, (p) ⊂ R

be a principal prime ideal. For any given ideal I ⊂ R[x], it is possible to find

s ∈ R− (p) such that

IR(p)[x] ∩R[x] = IRs[x] ∩R[x].

In particular, IR(p)[x] ∩R[x] can be computed.

Proof. We need to prove a claim beforehand.

Claim 1: If R is a Noetherian domain, then
⋂∞
k=1(pk) = (0), where (p) is a prime

ideal in R as above.

Proof of Claim 1: Assume
⋂∞
k=1(pk) 6= (0). Then there exists an element a such that

a ∈ (pk) for all k. Hence, a/p , a/p2, . . . are elements of R. Thus, we can form an

ascending chain of ideals (a/p) ⊂ (a/p2) ⊂ · · · ⊂ (a/pn) ⊂ . . . because inductively,

we have a/pn = p(a/pn+1) for all positive integer n. However, R is Noetherian and

this chain must stabilize for some m. Therefore, (a/pm) = (a/pm+1) = . . . which

implies p is a unit contradicting (p) being a prime ideal. This proves the claim.

Therefore, for any r 6= 0 in R, there exists an integer k ≥ 0 such that r ∈ (pk) but

r /∈ (pk+1). Hence, r = spk for some s /∈ (p). This s and k can be computed by ideal

membership algorithm. Let G = {g1, . . . , gr} be a Gröbner basis for I . So, lt(gi) =

sip
kixAi where si /∈ (p) as mentioned before. Thus, Lt(I) = 〈sipkixAi | 1 ≤ i ≤ r〉.

Claim 2: Lt(I)R(p)[x] = 〈pkixAi | 1 ≤ i ≤ r〉 for the prime ideal (p) in R.

Proof of Claim 2: We have R(p) = S−1R where S = R− (p) and (p) is a prime ideal.

If si /∈ (p) for all i, then si ∈ S for all i where si is a factor in the leading coefficient

of the above mentioned gi. Since Lt(I) is generated by sipkixAi in R[x], so is its

extension to R(p)[x]. Thus, Lt(I)R(p)[x] = 〈sipkixAi | 1 ≤ i ≤ r〉 = 〈pkixAi | 1 ≤
i ≤ r〉 since si are units in R(p), this proves Claim 2.

Claim 3: Lt(I)R(p)[x] ∩ R[x] = 〈pkixAi | 1 ≤ i ≤ r〉 in R[x] for the prime ideal (p)

in R.

Proof of Claim 3: Let f ∈ 〈pkixAi | 1 ≤ i ≤ r〉, then f =
∑r

i=1 hi(x)pkixAi where

hi(x) ∈ R[x], hence f ∈ R[x]. Since pkixAi ∈ Lt(I)R(p)[x], f ∈ Lt(I)R(p)[x]∩R[x].
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Conversely, if f ∈ Lt(I)R(p)[x] ∩ R[x], then f =
∑r

i=1(fi(x)/ci)p
kixAi where

fi(x) ∈ R[x] and ci ∈ R − (p). For B ≥ min{Ai}, the term in xB in the sum

is
∑s

i=1(di/ci)x
B−AipkixAi where (di/ci)x

B−Ai is the term of fi with degree B−Ai.
Here, di = 0 if no such term exists. After equating the denominators, the coeffi-

cient of xB is
∑s

i=1(Di/C)pki ∈ R(p) where C ∈ R − (p), Di ∈ R. We have∑s
i=1(Di/C)pki =

∑s
i=1(Dip

ki)/C. Let k = minDi 6=0{ki}, then
∑s

i=1Dip
ki =

rpM where r /∈ (p) and M ≥ k. Thus,
∑s

i=1(Dip
ki)/C = (rpM)/C ∈ R since

f ∈ Lt(I)R(p)[x] ∩ R[x]. Let (rpM)/C = t ∈ R, so tC = rpM where C /∈ (p)

and (p) is prime. Thus, pM | t, hence, t ∈ (p). This implies t = pM t̃ where

t̃ = r/C ∈ R. Therefore,
∑s

i=1(Di/C)pki = (rpM)/C = t̃pM . Thus, the term

in xB is rpM

C
xB = t̃pMxB = t̃pM−kjpkjxB−AjxAj where kj = minDi 6=0{ki} as above.

If we arrange this term, we get t̃pM−kjxB−AjpkjxAj where t̃ ∈ R, pM−kj ∈ R and

t̃pM−kjxB−Aj ∈ R[x] . Thus, the term in xB is in the ideal 〈pkixAi | 1 ≤ i ≤ r〉 in

R[x]. Hence, adding up all these terms in xB we get f ∈ 〈pkixAi | 1 ≤ i ≤ r〉. This

proves the claim.

For a similar result in Rs[x], we need to find an s ∈ R − (p) such that every si is

invertible in Rs[x]. If we let s =
∏
si then si are invertible in Rs since 1/si =

(s1 · · · si−1si+1 · · · sn)/s. Hence, Lt(I)Rs[x] = 〈sipkixAi | 1 ≤ i ≤ r〉Rs[x] =

〈pkixAi | 1 ≤ i ≤ r〉Rs[x]. As in the proof of Claim 3, 〈pkixAi | 1 ≤ i ≤ r〉R(p)[x] ∩
R[x] = 〈pkixAi | 1 ≤ i ≤ r〉 which means 〈pkixAi | 1 ≤ i ≤ r〉 is saturated in the

ring extension R(p)[x]. Since s ∈ R − (p), we have the extensions R[x] ⊂ Rs[x] ⊂
R(p)[x] and 〈pkixAi | 1 ≤ i ≤ r〉 is also saturated in the intermediate extension Rs[x]

(i.e. 〈pkixAi | 1 ≤ i ≤ r〉Rs[x] ∩ R[x] = 〈pkixAi | 1 ≤ i ≤ r〉). This gives

Lt(I)Rs[x]∩R[x] = 〈pkixAi | 1 ≤ i ≤ r〉Rs[x]∩R[x] = 〈pkixAi | 1 ≤ i ≤ r〉. Thus,

we obtain

Lt(I)R(p)[x] ∩R[x] = Lt(I)Rs[x] ∩R[x] = 〈pkixAi | 1 ≤ i ≤ r〉.

Since Lt(I)R(p)[x] = S−1Lt(I) where S = R − (p), and Lt(I)Rs[x] = T−1Lt(I)

for T = {sk | k ≥ 0}, we can use Corollary 3.2.10 to conclude that IR(p)[x] ∩
R[x] = IRs[x] ∩ R[x] and IR(p)[x] ∩ R[x] is computable by using Gröbner basis

since IRs[x] ∩R[x] can be computed by Proposition 3.2.6.

Corollary 3.2.12 (Corollary 3.8 in [13]). Let R be an integral domain, K be the
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quotient field ofR. Then for any given ideal I ⊂ R[x], IK[x]∩R[x] can be computed.

Proof. If p = 0 in Proposition 3.2.11, then R(0) becomes the quotient field of R,

hence the result follows.
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CHAPTER 4

ALGORITHMS FOR COMPUTING PRIMARY DECOMPOSITION USING

GRÖBNER BASES

4.1 Primality Test

The Gröbner basis techniques for operations on ideals described in the previous chap-

ter have an application to test whether an ideal I ⊂ R[x] is prime or not. The algo-

rithm relies on the following observations.

Lemma 4.1.1. Let I ⊂ R[x] be an ideal. I is prime if and only if I ∩R is prime and

the image of I in the canonical homomorphism from R[x] to (R/(I ∩R))[x] is prime.

Proof. See [12], Ch.3, Theorem 11.

Lemma 4.1.2. Let R be an integral domain, K be the quotient field of R. If I is an

ideal of R[x] such that I ∩R = (0), then I is prime if and only if IK[x] is prime and

I = IK[x] ∩R[x].

Proof. See [12], Ch. 4, Corollary 1 of Theorem 16.

Before stating the crucial tool for primality test, we make some assumptions. We

suppose we can decide whether an ideal is prime in the ring R. We also suppose

we can test whether polynomials in one variable over fields of fractions of residue

rings of R[x] are irreducible (for example, if R is a prime field or R = Z, then this

condition holds).

Proposition 4.1.3 (Proposition 4.3 in [13]). It is possible to decide whether an ideal

in R[x] = R[x1, . . . , xn] is prime.
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Proof. We will use induction on the number of variables. For the base step, if the

number of variables is zero, then we know that we can check if an ideal I ⊂ R is

prime in R by the assumptions on the ring R. Assume when the number of variables

is less then n, we can test the primality of an ideal I . Suppose I is an ideal in R̃[x1] =

R[x2, . . . , xn][x1] where R̃ = R[x2, . . . , xn]. I is prime in R[x] if and only if I is

prime in R̃[x1]. Now, we need to check whether I is prime in R̃[x1]. For this purpose,

we apply Lemma 4.1.1 to I ⊂ R̃[x1] and first check the primality of I ∩ R̃. We find a

Gröbner basis G of I . Hence, by Proposition 3.2.1(ii), a Gröbner basis of I ∩ R̃ can

be found as G∩ R̃, where G is a Gröbner basis for I (using a lex order with x1 as the

largest variable). Now, I ∩ R̃ is an ideal in R̃ = R[x2, . . . , xn]. Number of variables

drops by one. By inductive hypothesis, we can decide if I ∩ R̃ is prime or not in R̃.

Hence, we recursively start the algorithm from the beginning for I ∩ R̃ in R̃:

If I ∩ R̃ is not prime in R̃, then I is not prime in R̃[x1] due to Lemma 4.1.1. If I ∩ R̃
is prime in R̃, then we continue. We check if the image of I in (R̃/(I ∩ R̃))[x1] is

prime by Lemma 4.1.1. We introduce a new notation for practical purposes: I ′ :=

image of I in (R̃/(I ∩ R̃))[x1] and Ic := I ∩ R̃, hence (R̃/(I ∩ R̃))[x1] = (R̃/Ic)[x1]

and R′ := R̃/Ic.

With this notation, I ′ is an ideal in R′[x1]. By the reason of our continuation, Ic =

I ∩ R̃ is prime in R̃. Thus, R′ = R̃/Ic is an integral domain. For future usage of

Lemma 4.1.2, we need a claim.

Claim: I ′ ∩R′ = (0) in R′.

Proof of Claim: Let φ : R̃[x1] → (R̃/(I ∩ R̃))[x1] be the canonical homomorphism

such that R̃ = R[x2, . . . , xn]. Hence, y ∈ φ(I) = I ′ if and only if y = φ(f) =
∑
ãix

i
1

for some f =
∑
aix

i
1 ∈ I where ai ∈ R̃. So, y ∈ I ′ ∩ R′ = φ(I) ∩ (R̃/(I ∩ R̃))

if and only if
∑
ãix

i
1 = ã0 in R′ = R̃/(I ∩ R̃). Hence, ãi = 0̃ ∈ R̃/(I ∩ R̃) for

all i ∈ {1, . . . , d} where d = deg(f). Thus, a1, . . . , ad ∈ I ∩ R̃ ⊂ I. Therefore,

a0 = f −a1x1−· · ·−adxd1 ∈ I . Since a0 ∈ R̃, a0 ∈ I ∩ R̃. Thus, y ≡ 0̃ mod (I ∩ R̃)

which proves the claim.

Let φ : R̃[x1] → R′[x1] = (R̃/(I ∩ R̃))[x1] be the canonical homomorphism. So,

if f = adx
d
1 + ad−1x

d−1
1 + · · · + a1x1 + a0 then φ(f) = ãdx

d
1 + ãd−1x

d−1
1 + · · · +
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ã1x1 + ã0 where φ(ai) ≡ ãi in R̃/(I ∩ R̃). (i.e. ãi = ai + (I ∩ R̃)). Since we know

the generators of I ′ in R′[x1] (φ(G) generates φ(I) for a Gröbner basis G of I by

Proposition 3.2.7(i)), we can compute I ′. Now, we can use Lemma 4.1.2 since R′ is

an integral domain, I ′∩R′ = (0) and I ′ is an ideal ofR′[x1]. We letK ′ be the quotient

field of R′. So, I ′ is prime in R′[x1] if and only if the following two conditions are

satisfied:

1. I ′K ′[x1] is a prime ideal in K ′[x1].

2. I ′K ′[x1] ∩R′[x1] = I ′.

For 1., we have I ′ ⊂ R′[x1] an ideal, so, let I ′ = 〈f̃1, . . . , f̃r〉 in R′[x1], where

f̃i = φ(fi) for φ given above where {fi}ri=1 generates I in R̃[x1]. I ′K ′[x1] is an

extension ideal of I ′ in K ′[x1], so it is generated by {f̃i}ri=1, too. Since K ′ is a field,

K ′[x1] is a PID. Thus, I ′K ′[x1] is a principal ideal in K ′[x1]. Hence, I ′K ′[x1] = 〈F 〉
for some F ∈ K ′[x1]. So, 〈f̃1, . . . , f̃r〉 = 〈F 〉. To find F in K ′[x1], we either find

GCD of f̃1, . . . , f̃r using Euclidean Algorithm or find a reduced Gröbner basis of

〈f̃1, . . . , f̃r〉 in K ′[x1]. Therefore, this reduced Gröbner basis must consist of one

element cF where c is a unit in K ′, c 6= 0. Now, I ′K ′[x1] = 〈F 〉 is a prime ideal in

K ′[x1] if and only if F is an irreducible polynomial in K ′[x1]. This is computable by

our aforementioned assumption.

For 2., we check if I ′K ′[x1] ∩ R′[x1] = I ′ = 〈f̃1, . . . , f̃r〉. We use Corollary 3.2.12

to compute the generators of I ′K ′[x1] ∩ R′[x1] and we check if two ideals I ′ and

I ′K ′[x1] ∩ R′[x1] are the same by Gröbner basis techniques (ideal membership algo-

rithm).

As a result of the previous proposition and its proof, we obtain the following algo-

rithm for testing the primality of ideals.

Algorithm 4.1.4. PT(R; x; I). Primality Test

Input: Ring R; variables x = x1, . . . , xn; ideal I ⊂ R[x] (here, I is given means we

know the generators of I).

Assumptions: We can test primality of ideals in R. We can test irreducibility of

univariate polynomials over quotient fields of residue rings of R[x].
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Output: TRUE if I is prime, otherwise FALSE.

Step 1: If n = 0, then if I ⊂ R is prime, then return TRUE, otherwise return FALSE

(by using our assumptions on R, we know how to test the primality of I ⊂ R).

Step 2: Compute J = I∩R[x2, . . . , xn] (by Proposition 3.2.1(ii)). Note that J = I∩R̃
in the proof of Proposition 4.1.3.

Step 3: If PT (R;x2, . . . , xn; J) = FALSE then return FALSE. (By the inductive

hypothesis, we can check whether J is prime. The number of variables is reduced by

one, and the algorithm will stop when the number of variables drops to zero (Step 1)).

Step 4: Let R′ = R[x2, . . . , xn]/J and I ′ = IR′[x1], K ′ = the quotient field of R′.

Step 5: Compute I ′K ′[x1] = 〈f〉 (since we are in a Euclidean domain, we apply

Euclidean Algorithm to the generators of I ′ to find their GCD or we find a reduced

Gröbner basis for I ′, since generators of I ′ also generate I ′K ′[x1] and K ′[x1] is a

PID).

Step 6: If f is not irreducible over K ′ (implying I ′K ′[x1] is not prime) then return

FALSE (this irreducibility can be tested by assumptions). Else if f is irreducible, then

go to Step 7.

Step 7: Compute (I ′)ec = I ′K ′[x1]∩R′[x1] (by Corollary 3.2.12 and by using Gröbner

bases).

Step 8: If (I ′)ec ⊂ I ′ then return TRUE, otherwise return FALSE. (By Proposition

3.2.12 we can find generators of (I ′)ec and we can test whether each generator is in I ′

or not by ideal membership algorithm and Gröbner basis. Since obviously I ′ ⊂ (I ′)ec,

(I ′)ec ⊂ I ′ implies (I ′)ec = I ′ and if this is true, I ′ is prime by Lemma 4.1.2 which

implies primality of I .

4.2 Zero-dimensional Ideals

In this section, we investigate the properties of ideals that have Krull dimension zero.

We introduce Gröbner basis techniques to characterize zero-dimensional ideals.
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Definition 4.2.1. Let R be a commutative ring which is not trivial (0R 6= 1R). Krull

dimension of R is the maximal length l of a chain of prime ideals of R such as P0 (

P1 ( · · · ( Pl (see [2] p.827).

Definition 4.2.2. Krull dimension of an ideal I of a nontrivial commutative ring R is

the Krull dimension of R/I , that is, maximum length of ideal chains I ⊂ P0 ( P1 (

· · · ( Pl where Pi are prime ideals of R for all i.

Definition 4.2.3. If R is as above and I is an ideal of R, then I is zero-dimensional

if there exists no prime ideal P such that I ⊂ P (M where M is any maximal ideal

containing I .

Zero-dimensional ideals have very interesting properties. Computing their primary

decomposition is possible under a few extra conditions. Here we show that if specific

conditions are satisfied, then we can determine whether an ideal is zero-dimensional

by examining its Gröbner basis.

Lemma 4.2.4 (Lemma 5.1 in [13]). Let I ⊂ R[x] be an ideal such that I ∩ R is

zero-dimensional. Then I is zero-dimensional if and only if R[x]/I is integral over

R.

Proof. Let R[x]/I be integral over R. So, it is integral over the subring R/(I ∩R) ⊂
R[x]/I since if f(a + I) = 0 in R[x]/I for a ∈ R[x] and a monic polynomial

f(x1) ∈ R[x1], then f(a) ∈ I and if we let f̄(x1) =
∑
c̄ix

i
1 where c̄i = ci + (I ∩ R)

and f(x1) =
∑
cix

i
1, we get f̄(a + I) = f(a) + I = 0 + I in R[x]/I . Note

that f̄(x1) ∈ R/(I ∩ R)[x1] is also monic. By Corollary A.4.2 in [17], pg. 291,

R/(I∩R) andR[x]/I have the same dimension since this is an integral extension. By

assumption, I ∩R is zero-dimensional in R, hence this implies I is zero-dimensional

in R[x].

For the converse, assume that I is zero-dimensional in R[x]. Let I =
⋂m
k=1 Qk be

a primary decomposition of I . Let Mk =
√
Qk. Since I is zero-dimensional and

I ⊂
√
I =

⋂
Mk ⊂Mk where eachMk is prime (an associated prime of I), we obtain

Mk is maximal in R[x] (the only prime ideals which can contain a zero-dimensional

ideal are maximal ideals). Therefore, Mk ∩ R is prime in R (note that Mk ∩ R 6= R,

otherwise 1 ∈Mk contradictingMk being maximal). We have, I∩R ⊂Mk∩Rwhere
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I ∩ R is zero-dimensional and Mk ∩ R is prime, which again implies that Mk ∩ R
is maximal in R. Now, the field R[x]/Mk is a finite algebraic extension of the field

R/(Mk ∩R) by Hilbert’s Nullstellensatz. (See Corollary 7.10 in [10], pg.82). Hence,

for any h ∈ R[x], we have h + Mk ∈ R[x]/Mk is algebraic over R/(Mk ∩ R). The

minimal polynomial of h+Mk is f̄k(x1) =
∑
c̄ix

i
1 where fk(x1) =

∑
cix

i
1 ∈ R[x1]

and c̄i = ci + (Mk ∩R). Here, fk is monic and f̄k(h+Mk) = 0 +Mk = fk(h) +Mk

implies fk(h) ∈Mk. Since Mk =
√
Qk, we have (fk(h))N ∈ Qk for some N > 0 for

all k. Thus, F (h) =
∏

k(fk(h))N ∈
⋂
Qk = I which implies R[x]/I is integral over

R. (i.e. this product being in I is an expression of integral dependence for h mod I .

F (h+ I) = F (h) + I = 0 + I in R[x)/I and F is monic).

Proposition 4.2.5 (Proposition 5.2 in [13]). R[x]/I is integral over R if and only if

(x1, . . . , xn) ⊂
√
Lt(I).

Proof. Let R[x]/I be integral over R. Hence, for each i, there exists a monic poly-

nomial f(y1) ∈ R[y1] such that f(xi + I) = f(xi) + I = 0 + I in R[x]/I which

means f(xi) ∈ I . Thus, lt(f(xi)) ∈ Lt(I), but lt(f(xi)) is a power of xi, hence

xi ∈
√
Lt(I). For the converse statement, by Proposition 5.1 in [10], pg.59, if we

can show R[x]/I is finitely generated as an R-module, then we can conclude that

it is integral over R. Assuming (x1, . . . , xn) ⊂
√
Lt(I), let xmi

i ∈ Lt(I). Con-

sider the finitely generated R-module K =
∑

ai<mi
Rxa11 · · ·xann . If we show that

the R-module homomorphism φ : K → R[x]/I is surjective, then since K is a

finitely generated R-module, R[x]/I is a finitely generated R-module, too. Note

that, here φ(h) = h + I for h ∈ K. Let f ∈ R[x], consider f + I ∈ R[x]/I .

We will prove that φ is surjective by induction on the degree of f . If deg(f) = 0

then f = c ∈ R and f + I = φ(c) since c ∈ K. Assume g + I is in the im-

age of φ for all g such that deg(g) < deg(f). We can assume f /∈ I (if f ∈ I ,

then f + I = 0 + I = φ(0) and f + I is in the image). By reduction algo-

rithm (Proposition 3.1.6), there exists f ′ ∈ R[x] such that f ′ ≡ f mod I and

lt(f ′) /∈ Lt(I). Thus, lt(f ′) /∈ (xm1
1 , . . . , xmn

n ) ⊂ Lt(I). Therefore, lt(f ′) ∈ K.

Moreover, since f − f ′ ∈ I and lt(f ′) /∈ Lt(I), we have lt(f − f ′) 6= lt(f ′).

Hence, deg(f ′) ≤ deg(f). This implies, deg(f ′ − lt(f ′)) < deg(f ′) ≤ deg(f).

By the inductive hypothesis, (f ′ − lt(f ′)) + I = φ(h) for some h ∈ K. Therefore,

φ(lt(f ′) + h) = φ(lt(f ′)) + φ(h) = lt(f ′) + I + (f ′ − lt(f ′)) + I = f ′ + I = f + I .
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Hence, f + I is in the image of φ.

Corollary 4.2.6 (Corollary 5.3 in [13]). By using Gröbner basis, it is possible to

decide whether R[x]/I is integral over R or not. If R[x]/I is not integral over R,

then it is possible to find an i such that xi + I is not integral over R.

Proof. Let G be a Gröbner basis for the ideal I and let Gi = {g ∈ G | lt(g) =

cxmi for some c ∈ R, m ≥ 0}. Let Li ⊂ R be the ideal generated by the leading

coefficients of elements of Gi.

Claim 1: Lt(Gi) = Lt(G) ∩ R[xi] where G and Gi are as above and Lt(Gi) is

considered as an ideal in R[xi].

Proof of Claim 1:(⊂) : If a ∈ Lt(Gi), then a =
∑

j hjlt(gj) where hj ∈ R[xi], and

gj ∈ Gi, so gj ∈ G. Hence, a ∈ Lt(G), also a ∈ R[xi], too.

(⊃) : If b ∈ Lt(G) ∩ R[xi], then b =
∑

j hjlt(gj) where gj ∈ G, hj ∈ R[x]. For

gj ∈ Gi let hj = h̄j + h̃j where h̃j ∈ R[xi] is the sum of the terms of hj involving

only the variable xi. Then

b =
∑
gj /∈Gi

hjlt(gj) +
∑
gj∈Gi

h̄jlt(gj) +
∑
gj∈Gi

h̃jlt(gj).

Since each term in the first two sums contains variables other than xi and b ∈ R[xi],

the first two sums add up to zero. Hence b =
∑

gj∈Gi
h̃jlt(gj) ∈ Lt(Gi). This proves

Claim 1.

Claim 2: xi ∈
√
Lt(I) if and only if Li = (1) where Li is as given above.

Proof of Claim 2: If xi ∈
√
Lt(I), then xMi ∈ Lt(I)∩R[xi] for some M > 0.Hence,

xMi ∈ Lt(Gi) by Claim 1. Thus, xMi =
∑

j hjlt(gj) where hj ∈ R[xi] and gj ∈ Gi.

Let lt(gj) = cjx
mj

i , so Li = 〈c1, . . . , ck〉. Thus, 1 =
∑

j rjcj where rj = coefficient

of xM−mj

i in hj . Hence, 1 ∈ 〈cj〉 which implies Li = (1). Conversely, if Li = (1),

then
∑

j cjrj = 1 where rj ∈ R. Let N = max{mi}, then xNi
∑

j cjrj = xNi =∑
j cjx

mj

i rjx
N−mj

i =
∑

j lt(gj)rjx
N−mj

i ∈ Lt(Gi) ⊂ Lt(I) which implies xi ∈√
Lt(I). This proves the claim.

By Proposition 4.2.5 R[x]/I is integral over R if and only if each xi is in
√
Lt(I)

which is equivalent to Li = (1) in R. If I is given, we can compute a Gröbner basis
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G of I . Thus, we can compute Gi and Li for each i. Then we can check whether

Li = (1) or not. Hence, this way, we can decide whether R[x]/I is integral over R or

not.

Now, if xi /∈
√
Lt(I) =

√
Lt(G) (i.e. if Li 6= (1)), then xi + I is not integral over

R. Hence, the result follows.

Corollary 4.2.7 (Corollary 5.4 in [13]). If I∩R is zero-dimensional, then it is possible

to determine whether I is zero-dimensional or not. If I is not zero-dimensional, then

it is possible to find an i such that I ∩R[xi] is not zero-dimensional.

Proof. By Lemma 4.2.4 if I ∩ R is zero-dimensional, then I is zero-dimensional if

and only if R[x]/I is integral over R. By Proposition 4.2.5, R[x]/I is integral over R

if and only if (x1, . . . , xn) ∈
√
Lt(I). Hence, if xi /∈

√
Lt(I), then xi + I ∈ R[x]/I

is not integral over R, and thus I is not zero-dimensional. Here, we can determine

whether xi is in
√
Lt(I) or not by using Gröbner bases due to the Corollary 4.2.6.

Hence, we can decide the zero-dimensionality of I . Now, if I is not zero-dimensional,

then by Corollary 4.2.6, we can find an i such that xi + I is not integral over R. Thus,

xi + (I ∩ R[xi]) ∈ R[xi]/(I ∩ R[xi]) is not integral over R and hence I ∩ R[xi] is

not zero-dimensional by Lemma 4.2.4. (If there exists a monic f(y1) ∈ R[y1] such

that f(xi + (I ∩ R[xi])) = 0 + I ∩ R[xi], then f(xi) ∈ R[xi], hence f(xi + I) =

f(xi) + I = 0 + I in R[x]/I , contradicting xi + I is not integral over R).

Proposition 4.2.8 (Proposition 5.5 in [13]). Let I ⊂ R[x] be an ideal, let I ∩ R
be primary and zero-dimensional. Let G be a Gröbner basis for I . Then I is zero-

dimensional if and only if for each i, there exists a gi ∈ G such that lt(gi) = cix
mi
i

where ci ∈ R is a unit modulo I ∩R.

Proof. For a given Gröbner basis G of I , let us define Gi = {g ∈ G | lt(g) =

cxmi for some c ∈ R, m ≥ 0}. Let Li ⊂ R be the ideal generated by the leading

coefficients of elements of Gi. Since the polynomial ring R[x] is over a commutative

ring R here, G can contain some constants. Thus, G ∩ R ⊂ Gi. Also, definition of

Li implies I ∩ R ⊂ Li. Since G ∩ R generates I ∩ R and G ∩ R ⊂ Li. If I ∩ R
is zero-dimensional and primary, then there exists a unique maximal ideal containing

I ∩ R. This is so, because if we let I ∩ R ⊂ M (every proper ideal is contained in a
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maximal ideal), then
√
I ∩R ⊂

√
M = M (since maximal ideals are radical). Also,

since I ∩R is zero-dimensional, I ∩R ⊂
√
I ∩R ⊂M implies M =

√
I ∩R (since

I ∩R is primary,
√
I ∩R is prime). Therefore, M =

√
I ∩R is unique.

Claim: Li 6= (1) if and only if Li ⊂
√
I ∩R where Li is as above.

Proof of Claim: If Li ⊂
√
I ∩R and Li = (1), then Li = R which contradicts

Li ⊂
√
I ∩R, since

√
I ∩R is a maximal ideal, hence a proper ideal. Conversely, if

we assume Li 6= (1), then there exists a maximal ideal, say M , such that I ∩ R ⊂
Li ⊂M . By the part before this claim, we have M =

√
I ∩R; hence, this proves the

claim.

Therefore, I is zero-dimensional if and only if Li = (1) for all i, if and only if

Li 6⊂
√
I ∩R if and only if there exists a gi ∈ Gi such that lc(gi) = ci /∈

√
I ∩R

where (ci,
√
I ∩R) = (1) since

√
I ∩R is a maximal ideal. To prove that ci is a unit

modulo I ∩ R, we have 1 = cir + a where a ∈
√
I ∩R, r ∈ R. Thus, aM ∈ I ∩ R.

Also, we have (cir + a)M = 1, too. Hence ciK + aM = 1 after binomial expansion.

Since aM ∈ I ∩ R , aM ≡ 0 modulo I ∩ R, thus we get ci is a unit modulo I ∩ R.

This gives (1) = (ci, I ∩R).

Remark: Using the notation and assumptions as in Proposition 4.2.8, the elements of

I whose leading terms are divisible by xmi
i are reducible modulo {gi}∪(G∩R) where

lt(gi) = cix
mi
i . This is so, because (1) = (lc(gi), I∩R) implies 1 = r·lc(gi)+hwhere

h ∈ I ∩R. Hence xmi
i = r · lc(gi)xmi

i + hxmi
i . If G is a minimal Gröbner basis, then

by definition of minimal Gröbner basis, all elements of Gi except for gi have degree

in xi that is less than mi (otherwise, if there is a g 6= gi in Gi such that deg(g) ≥ mi,

then by the above argument, g is reducible modulo {gi} ∪ (G∩R) ⊂ G−{g} which

contradicts minimality of G). Therefore, using a minimal Gröbner basis to determine

whether I is zero-dimensional, it suffices to check that there exists only one element

of maximal degree in Gi and this element’s leading coefficient generates R together

with G ∩R. On the other hand, if I is zero-dimensional and G is a minimal Gröbner

basis of I, then gi can be identified as the unique element of Gi with the maximum

degree and necessarily lc(gi) is a unit modulo I ∩R.

In what follows, we try to understand the nature of zero-dimensional primary ideals.
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Here, a polynomial satisfies a property modulo an ideal I in R means, that polyno-

mial’s image as a polynomial over R/I satisfies that property. We begin with the

following lemmas about polynomials in one variable.

Lemma 4.2.9 (Lemma 5.6 in [13]). Let I ⊂ R[x1] be an ideal such that I ∩ R is

zero-dimensional. Assume xm1 ∈ Lt(I) and xm−1
1 /∈ Lt(I). Then every f ∈ I with

deg(f) < m is a zero divisor or zero modulo I ∩R.

Proof. If L ⊂ R is the ideal generated by the leading coefficients of elements of I

whose degrees are less than m, then we have the following claim.

Claim: If f ∈ I has degree less than m, then f ≡ 0 modulo L, where L is as above.

Proof of Claim: Let f = c1x
m−1
1 + c2x

m−2
1 + · · · + cm. Hence, either c1 = 0 or

c1 ∈ L. By the assumption of the lemma, there exists a g ∈ I such that lt(g) = xm1 ,

so let g = xm1 + d1x
m−1
1 + · · · + dm. If we also let f ′ = x1f − c1g, then we get the

following equalities.

f ′ = x1f − c1g

= x1(c1x
m−1
1 + c2x

m−2
1 + · · ·+ cm)− c1g

= c1x
m
1 + c2x

m−1
1 + · · ·+ cmx1 − c1(xm1 + d1x

m−1
1 + · · ·+ dm)

= c1x
m
1 + c2x

m−1
1 + · · ·+ cmx1 − c1x

m
1 − c1d1x

m−1
1 − · · · − c1dm

= (c2 − c1d1)xm−1
1 + (c3 − c1d2)xm−2

1 + · · ·+ (cm − c1dm−1)x1 − c1dm

Therefore, f ′ ∈ I and if we let f ′ = c′1x
m−1
1 +c′2x

m−2
2 +· · ·+c′m, then c′1 = (c2−c1d1).

Since c1d1 ∈ L, we get c′1 ≡ c2 modL. We have c′1 ∈ L, because f ′ ∈ I and

deg(f ′) < m. Thus, c2 ∈ L. By the same argument, we get c′2 ∈ L, too. Hence, this

implies c3 ∈ L since c′2 ≡ c3 modL. Continuing this way results in ci ∈ L for all i.

Therefore, f ≡ 0 modL which proves the claim.

Now, if L = (1), then I contains a monic polynomial of degree less than m, since

if 1 =
∑
rjcj where cj = lc(hj) and dj = deg(hj) < m, then for d = max{dj}

we get h =
∑
rjx

d−dj
1 hj which has leading term xd1, so deg(h) = d < m. This

contradicts the assumption that xm1 ∈ Lt(I) and xm−1
1 /∈ Lt(I). Hence, L is a proper

ideal of R. Let L ⊂ M where M is a maximal ideal of R. We also have I ∩ R ⊂ L

by definition of L. We have I ∩ R ⊂ L ⊆ M . Since I ∩ R is zero-dimensional,
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I ∩ R =
⋂
Qi (primary decomposition of I ∩ R) and

√
Qi = Mi where Mi are

maximal ideals. I ∩R ⊂M implies
√
I ∩R =

⋂
Mi ⊂

√
M = M , and

⋂
Mi ⊂M

implies Mi ⊂ M for some i since Mi are maximal, hence prime (if intersection of

prime ideals is a subset of another prime ideal P , then one of these prime ideals is a

subset of P ). Since Mi and M are both maximal ideals, Mi ⊂ M gives Mi = M .

Thus, we have I ∩ R ⊂ L ⊂ Mi. Since Mi is an associated prime of I ∩ R, we

have Mi = (I ∩ R : a) for some a 6∈ I ∩ R (see Proposition 7.17 in [10], pg.83) ,

then aM ⊂ I ∩ R which implies aL ⊂ I ∩ R, since L ⊂ M . Hence, there exists an

a /∈ I ∩R so that aL ⊂ I ∩R. Therefore, af ≡ 0 mod(I ∩R) if deg(f) < m by the

help of the above claim. This shows f is a zero divisor or zero mod(I ∩R).

Lemma 4.2.10 (Lemma 5.7 in [13]). Let I ⊂ R[x1] be a zero-dimensional ideal and

I ∩ R be zero-dimensional, primary. Let G be a minimal Gröbner basis for I and

let g1 ∈ G be such that lt(g1) = c1x
m1
1 where c1 ∈ R is a unit mod(I ∩ R) as in

Proposition 4.2.8. In this case,
√
I =

√
(g1, I ∩R).

Proof. For g1 ∈ G, if lt(g1) = c1x
m1
1 and c1 ∈ R is a unit mod(I ∩R), then we have

xm1
1 ∈ Lt(g1, I∩R) ⊂ Lt(I) since (1) = (g1, I∩R). Here, Lt(I) contains no smaller

power of x1, since G is a minimal Gröbner basis (otherwise if for m < m1, we have

xm1 is reducible modulo G−{g1}, then this implies g1 is reducible modulo G−{g1},
contradicting the minimality of G). Therefore, by Lemma 4.2.9, every f ∈ I whose

degree is less than m1 is a zero divisor or zero modulo I ∩R.

Claim 1: If I ∩ R is primary, then the set of zero divisors and zero mod(I ∩ R) in R

is
√
I ∩R.

Proof of Claim 1: Let a be a zero divisor modulo I ∩R in R, then ab ≡ 0mod(I ∩R)

for some b 6≡ 0 mod(I ∩ R) in R. That is, ab ∈ I ∩ R and b 6∈ I ∩ R. Since

I ∩ R is primary, by definition of primary ideals, we get a ∈
√
I ∩R. Conversely, if

ak ∈ I ∩R, but ak−1 6∈ I ∩R, then aak−1 ≡ 0 mod(I ∩R) implies a is a zero divisor

or zero modulo I ∩R. This proves the claim.

If f ∈ I and deg(f) < m1, then the proof of Lemma 4.2.9 implies af ≡ 0mod(I∩R)

for some a ∈ R, i.e. all coefficients of f are zero divisors or zero modulo I ∩ R.

Hence, they are in
√
I ∩R. Now, let F ∈ I . So, by Proposition 3.1.6, we have F ≡
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F ′ mod(g1,
√
I ∩R) where F ′ is reduced mod(g1,

√
I ∩R). Moreover, deg(F ′) <

m1, because xm1
1 ∈ Lt(g1, I ∩ R). Therefore, F ′ ≡ 0 mod(

√
I ∩R). Hence, F ∈

((g1, I ∩R) + (
√
I ∩R)R[x1]) = (g1,

√
I ∩R). Therefore, I ⊂ (g1,

√
I ∩R) ⊂

√
I .

If we take the radicals,
√
I ⊂

√
(g1,
√
I ∩R) ⊂

√√
I . Since

√√
I =
√
I , we have

√
I =

√
(g1,
√
I ∩R).

Claim 2:
√

(g1,
√
I ∩R) =

√
(g1, I ∩R).

Proof of Claim 2: Since
√
I ∩R ⊃ I ∩ R, we have LHS ⊇ RHS. Conversely,

if f ∈
√

(g1,
√
I ∩R), then fk ∈ (g1,

√
I ∩R). Hence, fk = g1f1 + h where

f1 ∈ R[x1], h ∈
√
I ∩R. Thus, hs ∈ I ∩ R for some s > 0. Taking s-th power of

both sides, we have (fk)s = (g1f1 + h)s. Using binomial formula, we get (fk)s =

(g1f1)s + s(g1f1)s−1h+ · · ·+ hs = g1F + hs where g1F + hs ∈ (g1, I ∩R). Hence,

fks ∈ (g1, I ∩R) which implies f ∈
√

(g1, I ∩R) and that proves the claim.

As a result, we get
√
I =

√
(g1,
√
I ∩R) =

√
(g1, I ∩R).

Now, it is possible for us to describe the zero-dimensional primary ideals by using

computable conditions on their Gröbner bases.

Proposition 4.2.11 (Proposition 5.8 in [13]). Let I ⊂ R[x] be a zero-dimensional

ideal, I ∩ R be zero-dimensional and primary. Let G be a minimal Gröbner basis

for I with respect to the lexicographical order such that x1 > x2 > · · · > xn and

let g1, . . . , gn ∈ G so that lt(gi) = cix
mi
i where ci ∈ R is a unit mod(I ∩ R) for

all i ∈ {1, . . . , n} (note that such gi exists by Proposition 4.2.8). In this case, I

is primary if and only if for all i, gi is a power of an irreducible polynomial modulo√
I ∩R[xi+1, . . . , xn]. If this is the case, then for every h ∈ G∩R[xi, . . . , xn]−{gi},

h ≡ 0 mod(
√
I ∩R[xi+1, . . . , xn]).

Proof. We use induction on the number of variables n. Let n = 0, then I ∩ R = I is

zero-dimensional and primary by assumption. Now, assume that the statement holds

for n−1 variables. For the ideal I ⊂ R[x1, x2, . . . , xn] satisfying the conditions of the

statement, let R′ = R[x2, . . . , xn], I ′ = I ∩R′. Then we can show that the conditions

of the statement hold for the ideal I ′ ⊂ R[x2, . . . , xn] and g2, . . . , gn ∈ G′ = G ∩ R′

(which is a minimal Gröbner basis of I ′) as follows. We have I ′ ∩R = I ∩R′ ∩R =
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I∩R is zero-dimensional and primary. Also, we need to show I ′ is zero-dimensional.

Claim 1: I is zero-dimensional implies I ∩R′ = I ′ is zero-dimensional.

Proof of Claim 1: Let I be zero-dimensional. Let G be a Gröbner basis for I in the

lexicographical order x1 > · · · > xn. So, by Proposition 4.2.8, for each i, there exists

a gi ∈ G such that lt(gi) = cix
mi
i where ci is a unit mod(I ∩ R). Since G′ = G ∩ R′

is a minimal Gröbner basis of I ′ = I ∩ R′, for each i ∈ {2, . . . , n}, gi ∈ G ∩ R′,
lt(gi) = cix

mi
i where ci is a unitmod(I ′∩R) (since I ′∩R = I∩R) implies I∩R′ = I ′

is zero-dimensional by Proposition 4.2.8 and this proves the claim.

As a result, the statement holds for the ideal I ′ in the polynomial ring R′ with n − 1

variables. Therefore, it suffices to prove that I is primary if and only if I ′ is primary

and g1 is a power of an irreducible polynomial modulo
√
I ′. To complete the proof,

we also need to show that, in this case, for every h ∈ G − {g1}, h ≡ 0 mod(
√
I ′).

(If I is primary then I ′ is primary by Claim 2 below and since the statement holds

for I ′, gi is a power of an irreducible polynomial mod(
√
I ∩R[xi+1, . . . , xn]) for

i ∈ {2, . . . , n}. Hence, it remains to show that this holds for i = 1. For the converse,

if I ′ is primary, and g1 is a power of an irreducible modulo
√
I ′, then each gi is a

power of an irreducible modulo
√
I ∩R[xi+1, . . . , xn] for i ∈ {1, . . . , n}.)

Claim 2: I is primary implies I ′ is primary.

Proof of Claim 2: Let I be primary, and assume ab ∈ I ′ = I ∩R′ for some a, b ∈ R′,
then ab ∈ I , thus a ∈ I or bk ∈ I for some k > 0 (since I is primary). Also, we have

a, b ∈ R′ which implies a ∈ I ∩ R′ or bk ∈ I ∩ R′. Hence, I ′ = I ∩ R′ is primary

proving the claim.

Now, assume I ′ = I∩R′ is primary. Let lt(g1) = c1x
m1
1 . If h ∈ G∩R[x1]−{g1}, then

deg(h) < m1 in x1. Otherwise, h would be reducible mod(g1, G ∩ R) by the remark

after Proposition 4.2.8 and this contradicts the minimality of G. Thus, by proof of

Lemma 4.2.9 and its notation, there exists an a 6∈ I ∩ R′ such that aL ⊂ I ∩ R′.
Hence, ah ≡ 0 mod(I ′), i.e. acj ∈ I ′ where cj’s are coefficients of h. Since I ′ is

primary and a 6∈ I ′, then ckj ∈ I ′. Thus, cj ∈
√
I ′, i.e. h ≡ 0 mod(

√
I ′). This proves

the second part of the proposition.(The condition holds for gi where i ∈ {2, . . . , n},
since by induction the statement holds for I ′ and I ′ is primary.)
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Claim 3: Let I be zero-dimensional. Then I is primary if and only if
√
I is prime.

Proof of Claim 3: Let I be primary, and let ab ∈
√
I for a, b ∈ R[x1, . . . , xn]. Thus,

(ab)k ∈ I for some k > 0. Hence, (ab)k = akbk ∈ I . Since I is primary, ak ∈ I

or (bk)t ∈ I for some t > 0. This implies a ∈
√
I or b ∈

√
I . Conversely, let

√
I

be prime, let I be zero-dimensional. So, let I =
⋂s
i=1Qi be an irredundant primary

decomposition of I . Hence,
√
I =

⋂s
i=1

√
Qi where

√
I is prime. Since I is zero-

dimensional,
√
Qi is maximal. Now, if P =

⋂k
i=1 Pi where P and Pi are prime ideals,

then P = Pi for some i. (See, Proposition 1.11 in [10], pg.8). Since maximal ideals

are prime, we have
√
I =

√
Qj for some j. Let

√
Qi = Mi where Mi is maximal.

Thus,
√
I = Mj for some j. Therefore, Mj ⊂Mi for i 6= j. However, since Mi’s are

maximal, this implies Mi = Mj for all i, j. Hence, there is only one maximal ideal

which implies there is only one associated prime. Therefore, I = Qj where Qj is

primary. This proves the claim.

By Lemma 4.2.10 and its proof, we have
√
I =

√
(g1, I ′) =

√
(g1,
√
I ′). Thus, we

can use Claim 3, since I is given to be zero-dimensional. We have I is primary if

and only if
√
I is prime if and only if

√
(g1,
√
I ′) is prime if and only if (g1,

√
I ′) is

primary (since
√
I =

√
(g1,
√
I ′) and I is zero-dimensional, we get J = (g1,

√
I ′) is

also zero-dimensional and we apply Claim 3 for the ideal J).

Claim 4: (g1,
√
I ′) is primary if and only if the ideal generated by g1 in (R′/

√
I ′)[x1]

is primary.

Proof of Claim 4: Let φ : R′[x1] → (R′/
√
I ′)[x1] be the canonical homomorphism.

Since φ is an epimorphism and kerφ = (
√
I ′)R′[x1] ⊂ (g1,

√
I ′), by using the defi-

nition of being primary, we can easily show that φ((g1,
√
I ′)) = (φ(g1)) is primary if

and only if (g1,
√
I ′) is primary. This proves the claim.

Using the above claims, we complete the proof as follows. What remains to be shown

is that I is primary if and only if I ′ is primary and g1 is a power of an irreducible

polynomial modulo
√
I ′. Assume first that I is primary. Then by Claim 2, I ′ is

primary. Since I ′ is zero-dimensional (by Claim 1) and primary,
√
I ′ is prime by

Claim 3. Indeed,
√
I ′ is maximal since I ′ is zero-dimensional. Hence, R′/

√
I ′ is a

field. Therefore, (R′/
√
I ′)[x1] is a PID. By Claim 4 and its preceding paragraph, we
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have I is primary if and only if (g1,
√
I ′) is primary if and only if the ideal generated

by g1 in (R′/
√
I ′)[x1] is primary. Since (R′/

√
I ′)[x1] is a PID, the ideal generated by

g1 in (R′/
√
I ′)[x1] is primary if and only if it is a power of an irreducible polynomial

in (R′/
√
I ′)[x1].

Conversely, assume that I ′ is primary and g1 is a power of an irreducible polyno-

mial modulo
√
I ′, i.e., g1 is a power of an irreducible polynomial in (R′/

√
I ′)[x1].

Since
√
I ′ is maximal (I ′ is one dimensional by Claim 1 and primary by assumption),

R′/
√
I ′ is a field, hence (R′/

√
I ′)[x1] is a PID. Following the equivalent statements

in the above paragraph, we can conclude that I is primary.

4.3 Zero-dimensional Primary Decomposition

Throughout this section, we assume that we can factor polynomials in one variable

over finitely generated algebraic extensions of R/M where M ⊂ R is any maximal

ideal. We will give an algorithm to compute the irredundant primary decomposition

of zero-dimensional ideals in R[x]. First, we write I as
⋂
Ii where Ii ∩ R[xn] is Mi-

primary while I ∩ R is M -primary. We then iterate the algorithm for each Ii and by

induction on the number of variables, in the end, we reach a primary decomposition

of I .

The following proposition yields the induction step.

Proposition 4.3.1 (Proposition 6.1 in [13]). Let I ⊂ R[x] be a zero-dimensional ideal

and let I ∩ R be an M -primary ideal where M ⊂ R is a maximal ideal. Then one

can construct zero-dimensional ideals I1, . . . , Im ⊂ R[x] and distinct maximal ideals

M1, . . . ,Mm ⊂ R[xn] such that I =
⋂
i Ii and Ii ∩R[xn] is Mi-primary.

Proof. If we let Ic = I ∩R[xn], then to apply Lemma 4.2.10, we need a claim.

Claim 1: Ic ∩R = I ∩R is zero-dimensional and primary.

Proof of Claim 1: First of all, Ic ∩ R = I ∩ R[xn] ∩ R = I ∩ R and we are given

I ∩R as M -primary, hence
√
I ∩R = M where M is a maximal ideal. Every prime

ideal containing I ∩R is maximal. This is because if we let I ∩R ⊂ P where I ∩R
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is primary and P is prime, then
√
I ∩R ⊂

√
P = P . However,

√
I ∩R is maximal,

so M =
√
I ∩R = P . This implies I ∩R is zero-dimensional and proves the claim.

Since I is zero-dimensional and I∩R is zero-dimensional and primary, by Proposition

4.2.8 there exists a gn ∈ I such that, lt(gn) = cnx
kn
n where cn is a unit modulo I ∩R.

Since xn is the smallest variable in the lex order we use, we get gn ∈ I ∩R[xn], hence

by Proposition 4.2.8 again, Ic = I ∩ R[xn] is zero-dimensional. Then by Lemma

4.2.10 and its proof, for g = gn, we have
√
Ic =

√
(g, Ic ∩R) =

√
(g,
√
Ic ∩R) =√

(g,M).

At the beginning of this section, we assumed that we can factorize univariate poly-

nomials, so we let g(xn) =
∏

i(pi(xn))si be the irreducible factorization of g(xn)

mod(M), i.e. factorization in (R/M)[xn], hence the coefficients of pi(xn)’s are in

R/M . Although these coefficients are in R/M , we can see pi(xn) in R[xn] by choos-

ing a representative for each coefficient. The images of pi(xn) in (R/M)[xn] are

irreducible polynomials in a PID (since R/M is a field), hence they are pairwise

comaximal non-units.

Claim 2:
∏

i(pi(xn))si ∈ (g,M) ⊂
√
Ic.

Proof of Claim 2: In (R/M)[xn], we have
∏

i(pi(xn))si = g(xn). This implies,∏
i(pi(xn))si−g(xn) ∈MR[xn]. Therefore,

∏
i(pi(xn))si ∈ (g,M) where (g,M) ⊂√

(g,M), and since
√

(g,M) =
√
Ic, we prove the claim.

Hence, (
∏

i(pi(xn))si)s ∈ Ic for some s > 0.

Claim 3: I contains a power of M .

Proof of Claim 3: Since R is Noetherian, M =
√
I ∩R has a finite basis. Let

M = 〈h1, . . . , hs〉. So, hkii ∈ I ∩ R for all i ∈ {1, . . . , s}. Each element of M is

expressed as
∑s

i=1 αihi, hence (
∑s

i=1 αihi)
k1+···+ks ∈ I ∩ R. Let K = max{ki}.

Thus, MKs ⊂ I ∩R ⊂ I . If we let Ks = t, then M t ⊂ I which proves the claim.

Claim 4: If pi(xn) and pj(xn) are comaximal mod(M) for i 6= j, and I contains a

power of M , then pi(xn) and pj(xn) are comaximal mod(I).

Proof of Claim 4: If pi(xn), pj(xn) ∈ R[xn] are comaximal mod(M), then one of
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their linear combinations in (R/M)[xn] is 1̄, i.e. (p̄i) + (p̄j) = (R/M)[xn]. Thus,

āp̄i + b̄p̄j = 1̄ in (R/M)[xn] where a, b ∈ R[xn]. So, api + bpj − 1 ∈ MR[xn].

Let api + bpj − 1 = F ∈ MR[xn]. We have Mk ⊂ I ∩ R for some k > 0 by

Claim 3. Therefore, FN has coefficients in I ∩ R for some N > 0. Hence, FN ∈ I .

Thus, (api + bpj − 1)N ∈ I which implies (api + bpj − 1)N ≡ 0 in R[xn]/I . If we

write this binomial expansion explicitly, we get cpi + dpj + (−1)N ≡ 0 in R[x]/I for

some c, d ∈ R[xn]. This implies pi and pj are comaximal in R[x]/I , hence proves the

claim.

Claim 5:
⋂
i(p

sis
i , I) = (

∏
i p

sis
i , I) = I.

Proof of Claim 5: Since psii are pairwise comaximal in R[x]/I by Claim 4, we can

conclude psisi are also pairwise comaximal in R[x]/I . Hence, by Chinese Remain-

der Theorem,
⋂

(psisi ) = (
∏
psisi ) in R[x]/I (see [5], pg.131). Thus,

⋂
(psisi , I) =

(
∏
psisi , I) = I in R[x] since (

∏
psii )s ∈ Ic ⊂ I . This proves the claim.

Let Ii = (psisi , I) and Mi = (pi,M)R[xn]. Therefore, by Claim 5 we get
⋂
Ii = I .

Claim 6: Mi = (pi,M)R[xn] is maximal in R[xn].

Proof of Claim 6: We have the isomorphism:

R[xn]

Mi

∼=
R[xn]/(MR[xn])

Mi/(MR[xn])
.

Also,
R[xn]

MR[xn]
∼=

R

M
[xn] and

(pi,M)R[xn]

MR[xn]
∼= (p̄i) ⊂ (R/M)[xn]. Moreover, since

M is maximal , R/M is a field, and since p̄i is irreducible in (R/M)[xn],
(R/M)[xn]

(p̄i)
is a field. Thus, Mi is a maximal ideal in R[xn]. This finishes the proof of the claim.

Claim 7: Ii ∩R[xn] = (psisi , I) ∩R[xn] contains a power of Mi = (pi,M)R[xn].

Proof of Claim 7: We have psisi ∈ Ii, pi ∈ R[xn], Mi ⊂ R[xn] and since M =
√
I ∩R, we get M t ⊂ I ∩ R ⊂ Ii ∩ R[xn], for some t > 0 (by Claim 3). Hence, a

suitable power of Mi, say M sis+t
i is in Ii ∩ R[xn] which completes the proof of the

claim.

Claim 8: If Ii ∩ R[xn] contains a power of Mi, then Ii ∩ R[xn] is either Mi-primary

or the unit ideal in R[xn].
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Proof of Claim 8: If M t
i ⊂ Ii ∩ R[xn] for some t > 0, then

√
M t

i ⊂
√
Ii ∩R[xn].

Since Mi is maximal, we can show that
√
M t

i = Mi. Hence, Mi ⊂
√
Ii ∩R[xn].

Since Mi is maximal, either Mi =
√
Ii ∩R[xn] or

√
Ii ∩R[xn] = R[xn]. In the

latter case Ii ∩ R[xn] = R[xn]. In the former case, we can conclude that Ii ∩ R[xn]

is Mi-primary. (Since I ∩ R[xn] is zero-dimensional and I ∩ R[xn] ⊂ Ii ∩ R[xn],

we get Ii ∩ R[xn] is either zero-dimensional or the unit ideal in R[xn]. If Ii ∩ R[xn]

is zero-dimensional, then
√
Ii ∩R[xn] =

⋂
Kj where Kj are the associated primes

which are all maximal. Then,
√
Ii ∩R[xn] = Mi =

⋂
Kj implies there exists only

one Kj and Mi = K1, hence Ii ∩ R[xn] is Mi-primary since there is one associated

prime, hence one primary component.) This proves the claim.

Claim 9: Ii ∩R[xn] 6= R[xn].

Proof of Claim 9: Since Ii = (psisi , I), if c ∈ Ii, then c = apsisi + b where a ∈ R[x],

b ∈ I . Thus, (
∏

i 6=j p
sjs
j )Ii ⊂ I since (

∏
i 6=j p

sjs
j )(apsisi + b) ∈ I as

∏
i p

sis
i ∈

I . Assume Ii ∩ R[xn] = (1), then (
∏

i 6=j p
sjs
j ) · 1 =

∏
i 6=j p

sjs
j ∈ I . Since pj ∈

R[xn] for all j,
∏

i 6=j p
sjs
j ∈ I ∩ R[xn] = Ic ⊂

√
Ic =

√
(g,M) which implies∏

i 6=j pj ∈ (g,M). Hence,
∏

i 6=j pj = gh + m for some h ∈ R[xn], m ∈ MR[xn].

Modulo M (in (R/M)[xn]), we get
∏

i 6=j pj ≡ (
∏
psii ) · h which contradicts that pi

is an irreducible, non-unit in the PID (R/M)[xn] (considering unique factorization in

(R/M)[xn]). Therefore, Ii 6= (1) which proves the claim.

As a result of Claim 8 and 9, Ii ∩ R[xn] is Mi-primary. We have already shown that

I =
⋂
Ii which completes the proof.

If we use the above proposition recursively for Mi and Ii over R[xn], then we can

obtain the complete primary decomposition of the ideal I and its associated primes.

Algorithm 4.3.2. ZPD (R; x; M). Zero-dimensional ideals’ primary decomposition

Input: Ring R; variables x = x1, . . . , xn ; ideal I ⊂ R[x]; ideal M ⊂ R.

Assumptions: M is maximal, I is zero-dimensional, I ∩R is M -primary.

Output: {(Q1,M1), . . . , (Qm,Mm)} where Qi and Mi are ideals in R[x] such that

Mi is maximal, Mi 6= Mj for i 6= j, Qi is Mi-primary, and I =
⋂
iQi (irredundant

primary decomposition of I).
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Step 1: If n = 0 then return {(I,M)}. (Here, if n = 0, then I ∩ R = I . I is zero-

dimensional and
√
I = M by assumption. So, I is M -primary and its decomposition

is itself.)

Step 2: Compute a minimal Gröbner basisG for I∩R[xn] (by using Proposition 3.2.1

(ii).) (For an ideal I , we can compute a Gröbner basis G̃ and make it minimal. Then

by Proposition 3.2.1 (ii), G̃∩R[xn] is a minimal Gröbner basis, say G, for I ∩R[xn].)

Step 3: Select g ∈ G of largest degree. (Since G is minimal, I is zero-dimensional

and I ∩ R is zero-dimensional primary, there exists a unique such g by the remark

after Proposition 4.2.8).

Step 4: Compute the irreducible factorization of g mod(M) where g =
∏

i p
si
i in

(R/M)[xn], and pi ∈ R[xn]. (We can compute this factorization by the assumption

preceding Proposition 4.3.1. Afterwards, we can choose one representative from each

coset of R/M , thus we can write pi ∈ R[xn]).

Step 5: Find an integer s > 0 such that (
∏

i p
si
i )s ∈ I ∩ R[xn]. (If we let f =

∏
i p

si
i ,

then for consecutive values of s, we can compute f s and we can determine whether

f s ∈ I ∩ R[xn] by ideal membership algorithm. Note that such an s exists by the

proof of Proposition 4.3.1).

Step 6: Let Ii = (psisi , I), Mi = (pi,M)R[xn] (by Proposition 4.3.1 I =
⋂
Ii and

Ii ∩R[xn] is Mi-primary).

Step 7: Return
⋃
i ZPD(R[xn]; x1, . . . , xn−1; Ii, Mi)

The algorithm is recursively defined. At Step 6 we get I =
⋂
Ii and Ii ∩ R[xn]

is Mi-primary by Proposition 4.3.1. Each Ii is zero-dimensional since I is zero-

dimensional, I ⊂ Ii and Ii 6= R[x] (1 6∈ Ii since Ii ∩ R[xn] 6= R[xn] as Ii ∩ R[xn] is

primary inR[xn]). Ii is zero-dimensional, Ii∩R[xn] isMi-primary andMi is maximal

in R[xn], hence the assumptions of the algorithm hold for Ii ⊂ (R[xn])[x1, . . . , xn−1]

considering R[xn] as the coefficient ring and x1, . . . , xn−1 as variables. Therefore,

in Step 7, we can apply the algorithm to Ii and Mi where this time, the number of

variables is n − 1. At each stage of the algorithm (at each iteration) the number of

variables drops by 1, and the algorithm terminates when the number of variables is 0.
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By induction on n (number of variables) we can prove that this algorithm gives an

irredundant primary decomposition of I as follows. If n = 0, then I = I ∩ R is M -

primary, thus I = I is an irredundant primary decomposition of I . We can also see

that if n = 1, at Step 6, I =
⋂
Ii is a primary decomposition of I (here, I ⊂ R[x1] and

Ii ∩R[x1] = Ii is Mi-primary in R[x1]), and it is irredundant since Mi are distinct by

proof of Proposition 4.3.1. This argument shows that the algorithm works for n = 0

and n = 1. Assume now, the algorithm works for n− 1 variables.

For I ⊂ R[x1, . . . , xn] satisfying the assumptions of the algorithm, at Step 6, we get

I =
⋂
Ii, I ⊂ (R[xn])[x1, . . . , xn−1] considering R[xn] as the coefficient ring, and

x1, . . . , xn−1 as variables, as explained above, we can apply the algorithm to Ii and

Mi. Since there are n − 1 variables, by inductive hypothesis, the algorithm returns

Ii =
⋂
j Qij (an irredundant primary decomposition of Ii) and Mij =

√
Qij where

Qij is Mij-primary. Then we get, I =
⋂
i Ii =

⋂
i(
⋂
j Qij) =

⋂
i,j Qij which gives

primary decomposition of I .

To show irredundancy, we need to prove Mi1j1 6= Mi2j2 whenever (i1, j1) 6= (i2, j2).

By the induction hypothesis on n− 1 variables, we have Mij1 6= Mij2 if j1 6= j2 since

Ii =
⋂
j Qij is an irredundant primary decomposition of Ii by assumption. Since

Ii ∩ R[xn] is Mi-primary,
√
Ii ∩R[xn] = Mi ⊂ R[xn]. Thus, Mi is equal to the

following:

√
Ii ∩R[xn] =

√
(
⋂
j

Qij) ∩R[xn] =

√⋂
j

(Qij ∩R[xn]) =
⋂
j

√
Qij ∩R[xn].

Therefore, Mi ⊂
√
Qij ∩R[xn] and since Qij ∩ R[xn] 6= R[xn] (1 6∈ Qij as Qij is

primary) we can conclude Mi =
√
Qij ∩R[xn] using Mi is maximal in R[xn]. We

have Mi =
√
Qij ∩R[xn] =

√
Qij ∩ R[xn] = Mij ∩ R[xn]. Assume Mi1j1 = Mi2j2

for i1 6= i2, then Mi1 = Mi1j1 ∩ R[xn] = Mi2j2 ∩ R[xn] = Mi2 which contradicts

Mi1 6= Mi2 (Mi are distinct by proof of Proposition 4.3.1). Therefore, Mi1j1 6=
Mi2j2 whenever i1 6= i2. This completes the proof of irredundancy for the primary

decomposition I =
⋂
i,j Qij . Hence, the algorithm works for n variables completing

the proof by induction.

To clarify the procedure in this algorithm, we look at a few initial stages more ex-

plicitly. At the first stage, I ⊂ R[x1, . . . , xn], I ∩ R is M -primary, I is zero-
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dimensional. At the end of this stage, we get I =
⋂
Ii, Ii ∩ R[xn] is Mi-primary

where Mi ⊂ R[xn] is maximal. In stage two, we apply the algorithm to each pair

(Ii,Mi) where Ii ⊂ (R[xn])[x1, . . . , xn−1] (the coefficient ring is R[xn] and there

are n − 1 variables x1, . . . , xn−1). At the end of stage two, we get Ii =
⋂
j Iij

and Iij ∩ R[xn−1, xn] is Mij-primary where Mij ⊂ R[xn−1, xn] is maximal. So,

I =
⋂
i Ii =

⋂
i,j Iij . Similarly, at stage three, we apply the algorithm to each pair

(Iij,Mij) where Iij ⊂ (R[xn−1, xn])[x1, . . . , xn−2] (the coefficient ring isR[xn−1, xn]

and there are n − 2 variables x1, . . . , xn−2. At the end of stage three, we get Iij =⋂
k Iijk and Iijk ∩ R[xn−2, xn−1, xn] is Mijk- primary where Mijk is a maximal ideal

in R[xn−2, xn−1, xn]. We obtain I =
⋂
i,j Iij =

⋂
i,j,k Iijk.

Continuing this way, at the end of k − th stage, we get I =
⋂
i1,i2,...,ik

Ii1i2...ik where

Ii1...ik ∩ R[xn−k+1, . . . , xn] is Mi1...ik-primary where Mi1i2...ik is a maximal ideal in

R[xn−k+1, . . . , xn].

The algorithm stops at the end of the n−th stage where we obtain I =
⋂
i1,...,in

Ii1i2...in

where Ii1...in ∩ R[x1, . . . , xn] = Ii1...in is Mi1...in primary where Mi1...in is a maximal

ideal in R[x1, . . . , xn] = R[x], therefore we reach an irredundant primary decompo-

sition of I .

Remark: At the end of the algorithm, we obtain the irredundant primary decompo-

sition, hence I =
⋂
Ĩi where Ĩi is M̃i primary and M̃i is maximal in R[x]. We can

compute
√
I as
√
I =

√⋂
Ĩi =

⋂√
Ĩi =

⋂
M̃i since

√
Ĩi = M̃i. The algorithm

explicitly computes the maximal ideals M̃i, hence we can explicitly compute
√
I as⋂

M̃i.

4.4 Primary Decomposition in Polynomial Rings over Principal Ideal Domains

In this section, we investigate the problem of primary decomposition where the coef-

ficient ring is a PID.

Lemma 4.4.1 (Lemma 8.1 in [13]). Let S be a multiplicatively closed subset of R

and let s ∈ S.

If (S−1I) ∩R ⊂ (I : s) then I = (I : s) ∩ (I, s).
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Proof. I ⊂ (I : s) since if i ∈ I then is ∈ I , by definition of an ideal. Also,

I ⊂ (I, s) since I is in the generator set of (I, s). Conversely, let a ∈ (I : s) ∩ (I, s).

So, since a ∈ (I, s), a = i + ks where k ∈ R, i ∈ I . Also, we have a ∈ (I : s), thus

as = is + ks2 ∈ I . Here, is ∈ I , as ∈ I implies ks2 ∈ I . Thus, k =
ks2

s2
∈ S−1I .

Together with k ∈ R, this implies k ∈ (S−1I) ∩ R ⊂ (I : s) by assumption of the

lemma. Then, ks ∈ I which implies a = i+ ks ∈ I .

If we use this lemma and Proposition 3.2.11, then we reach the next proposition which

serves as the key of the decomposition process.

Proposition 4.4.2 (Proposition 8.2 in [13]). Let R be an integral domain, (p) ⊂ R

be a principal prime ideal. For any given ideal I ⊂ R[x], it is possible to find an

element r ∈ R− (p) such that

I = (I, r) ∩ Iec

where Iec = IR(p)[x] ∩R[x].

Proof. We can find an element s ∈ R− (p) so that Iec = IRs[x]∩R[x] = IR(p)[x]∩
R[x] by using Proposition 3.2.11. Also, we can find a generating set (a Gröbner

basis) of Iec, i.e., we can compute Iec by Corollary 3.2.6. Let G = {g1, . . . , gt}
be a Gröbner basis for Iec = IRs[x] ∩ R[x]. So, gi = hi1f1 + · · · + hikfk where

I = 〈f1, . . . , fk〉 and hij ∈ Rs[x] for all i ∈ {1, . . . , t} , j ∈ {1, . . . , k} and for

some k ∈ N. Here, each hij has a denominator sαij . Let mi = maxj{αij}. Then,

smihij ∈ R[x] and hence, smigi ∈ I . If we let m = max{mi}, then we have smgi ∈
I , for all i ∈ {1, . . . , t}. Since gi’s are the basis elements for Iec, we have smIec ⊂ I ,

i.e., Iec ⊂ (I : sm). Here, we can compute mi for each gi by checking whether

smigi ∈ I or not by using ideal membership algorithm and substituting mi = 1, 2, . . .

. Surely, we can compute m = max{mi} then. Since for S = R − (p), we have

S−1I ∩ R[x] = IR(p)[x] ∩ R[x] = Iec and Iec ⊂ (I : sm) from above, we obtain

S−1I ∩ R[x] ⊂ (I : sm) where sm ∈ S since s ∈ S. Therefore, by Lemma 4.4.1, we

have I = (I : sm) ∩ (I, sm). Thus, since Iec ⊂ (I : sm) and I ⊂ Iec,

I ⊂ Iec ∩ (I, sm) ⊂ (I : sm) ∩ (I, sm) = I.
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Therefore, Iec ∩ (I, sm) = (I : sm) ∩ (I, sm) = I . Taking sm = r finishes the

proof.

Following is the central proposition of this section.

Proposition 4.4.3 (Proposition 8.3 in [13]). Let R be a PID, I be an ideal in R[x],

(p) ⊂ R be a maximal ideal. If I ∩ R is (p)-primary, then it is possible to compute a

primary decomposition for I .

Proof. Let us note that if I ∩R is (p)-primary and (p) is a maximal ideal, then I ∩R
is zero-dimensional.

Suppose I is zero-dimensional, then we can find a decomposition by zero-dimensional

primary decomposition algorithm, i.e., ZPD which was introduced after Proposition

4.3.1. Now, suppose I is not zero-dimensional, then by Corollary 4.2.7 we can find

an i such that I ∩ R[xi] = I ∩ R′ is not zero-dimensional where R′ = R[xi].

Let x′ = x1, . . . , xi−1, xi+1, . . . , xn (x′ is equal to the whole sequence of variables

x1, x2, x3, . . . ). Thus, R′[x′] = R[x] and I ∩R′ is not zero-dimensional.

By Proposition 4.4.2, we can find an element r′ ∈ R′−(p)R′ such that I = (I, r′)∩Iec

where Iec = IR′(p)[x
′] ∩ R′[x′]. Therefore, it is enough to decompose (I, r′) and Iec

separately.

Claim 1: Since (I, r′)∩R′ contains both the (p)-primary ideal I ∩R and the element

r′ /∈ (p)R′, we can conclude (I, r′) ∩ R′ is either zero-dimensional or the unit ideal

R′.

Proof of Claim 1: We need to clarify a possible misconception here: Since (I, r′)∩R′

is an ideal in R′ and I ∩ R is an ideal in R, we can not conclude directly that “If

(I ∩R) ⊆ (I, r′)∩R′ and I ∩R is (p)-primary then (I, r′)∩R′ is zero-dimensional.”

Now, let J = (I, r′)∩R′. Assume that J is not the unit ideal. So, J is contained in at

least one maximal (hence prime) ideal. Let there be a chain of prime ideals containing

J as follows: (I ∩ R) ⊆ J ⊆ Q1 ⊆ · · · ⊆ Qt ⊆ R′ where J contains I ∩ R as a set.

We are given that (I ∩ R) is (p)-primary. Thus,
√
I ∩R = (p) implying pk ∈ I ∩ R

for some k > 0. Thus, pk ∈ J and pk ∈ Q1, hence p ∈ Q1 since Q1 is prime.
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Therefore, (p)R
′ ⊆ Q1. If we look at the quotient ideals, then we have:

Q1

(p)R′
⊆ Q2

(p)R′
⊆ · · · ⊆ Qt

(p)R′
⊆ R

′

(p)R′
.

Note that if Qi is prime in R′, then Qi

(p)R′ is prime in R
′

(p)R′ . Now, since p ∈ R,

R
′

(p)R′
=

R[xi]

(p)R[xi]
∼=

R

(p)
[xi].

Moreover, since (p) is maximal in R, R/(p) is a field. Then, R
′

(p)R′ is a PID.

Prime ideals in a PID are either (0) which is one dimensional, or (α) which is zero-

dimensional, where α is an irreducible element. So, if
Q1

(p)R′
= (0) then Q1 =

(p)R
′ . However, r′ /∈ (p)R

′ and r′ ∈ Q1 since r′ ∈ J ⊆ Q1. Therefore,
Q1

(p)R′

6= (0). Hence,
Q1

(p)R′
is zero-dimensional. Thus, the chain of prime ideals contain-

ing J = (I, r
′
) ∩ R′ in R′ can have at most one prime ideal Q1. Therefore, J is

zero-dimensional. (If Q1 ( Q2 then Q1

(p)R′ ( Q2

(p)R′ ). This proves the claim.

Here, we can check whether 1 ∈ J by using Gröbner Basis and ideal membership

algorithm. If 1 /∈ J , i.e. J 6= R
′ , then J is zero-dimensional.

If (I, r
′
)∩R[xi] is zero-dimensional for (I, r

′
), then the number of xk’s where (I, r

′
)∩

R[xk] is not zero-dimensional is at least one less than the number of variables where

I ∩ R[xk] is not zero-dimensional. Then we start the Algorithm 4.4.5 from (I, r
′
)

instead of I and obtain a primary decomposition of (I, r′) by induction on the number

of variables such that I ∩ R[xk] is not zero-dimensional. For this purpose, we need

to check whether (I, r
′
) ∩ R is (p)-primary: Since I ∩ R ⊂ (I, r′) ∩ R , I ∩ R

is zero-dimensional and (I, r′) ∩ R 6= (1) (because (I, r′) ∩ R′ is zero-dimensional

which means 1 6∈ (I, r′)). We can conclude (I, r′) ∩ R is zero-dimensional. Since

I ∩R is (p)-primary and (p) is maximal, (p) =
√
I ∩R ⊂

√
(I, r′) ∩R 6= (1) gives

(p) =
√

(I, r′) ∩R. Therefore, (I, r′)∩R is (p)-primary since it is zero-dimensional.

If on the other hand, (I, r
′
)∩R′ = R

′ , then (I, r
′
) = R[x] since 1 ∈ (I, r

′
). Therefore,

I = (I, r
′
) ∩ Iec = Iec. In this case, we need to decompose Iec.

Decomposing Iec is equivalent to decomposing Ie = IR′(p)[x
′] and finding its contrac-
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tion to R′ [x′ ] by Proposition 3.2.11. We have Iec = Ie ∩ R′ [x′ ], let Ie =
⋂m
i=1Qi be

a primary decomposition of Ie. Thus, Iec = (
⋂m
i=1Qi)∩R

′
[x
′
] =

⋂m
i=1(Qi ∩R

′
[x
′
]).

Let (Qi ∩ R
′
[x
′
]) = Q̃i. Let us check whether Q̃i is primary. Let ab ∈ Q̃i for

a, b ∈ R′ [x′ ]. Hence, ab ∈ Qi which implies a ∈ Qi or bk ∈ Qi for some k > 0 since

Qi is primary. We also have a, b ∈ R′ [x′ ]. So a ∈ Q̃i or bk ∈ Q̃i which implies Q̃i is

primary.

Claim 2: R
′

(p) is a PID.

Proof of Claim 2: If S = R[xi]−(p)R[xi] thenR′(p) = (R[xi])(p) = S−1R
′ . There is a

one-to-one correspondence between the proper ideals of R[xi] which do not intersect

with S and the proper ideals of S−1R[xi] which can be depicted as I ←→ S−1I

where S ∩ I = ∅. We know that if R is a PID then R is Noetherian, thus R[xi] is

Noetherian by Hilbert’s Basis theorem. Let us take an ideal J in S−1R[xi] = R
′

(p).

Hence, J = S−1I for some ideal I ⊆ R[xi] where I ∩ S = ∅. Since R[xi] is

Noetherian, I = 〈f1, . . . , fs〉 in R[xi]. J = S−1I = 〈f1, . . . , fs〉R
′

(p). Elements of S

are units in S−1R
′

= R
′

(p). We have S as the set of polynomials in R[xi] which are

not divisible by p since S = R[xi]− (p)R[xi].

Now, since R is a PID, R is a UFD and hence R[xi] is a UFD. Therefore, if p is

irreducible in R, then p is irreducible in R[xi]. Since R[xi] is a UFD, fi = pαi .f̃i

where αi > 0 , f̃i are units in S−1R[xi], and p - f̃i. In fact, αi ≥ 1 since I ∩ S =

∅. Hence, all elements of I are divisible by p: J = S−1I = 〈f1, . . . , fs〉R
′

(p) =

〈pα1 f̃1, p
α2 f̃2, . . . , p

αs f̃s〉R
′

(p) = 〈pα1 , . . . , pαs〉R′(p) since f̃i is unit in R
′

(p). Thus,

J = S−1I = 〈pα〉R′(p) where α = mini{αi}. Therefore, J is a principal ideal which

implies that R′(p) is a PID. This completes the proof of the claim.

Note that for any ideal Ĩ = 〈q1, . . . , qs〉 ⊆ R̃ and units u1, . . . , us ∈ R̃ we have

Ĩ = 〈q1, . . . , qs〉 = 〈q1u1, . . . , qsus〉 in R̃.

Claim 3: (p)R
′

(p) is the unique maximal ideal of R
′

(p).

Proof of Claim 3: By the proof of Claim 2, all proper ideals of R′(p) are given by

(pα)R′(p) for α ≥ 1. Then, α = 1 gives the unique maximal ideal.

Claim 4: Ie ∩R′(p) is (p)R
′

(p)-primary.
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Proof of Claim 4: We are given that I ∩ R is (p)-primary. Hence, (p) =
√
I ∩R

which implies pk ∈ I ∩ R. Thus, pk ∈ I , so pk ∈ IR
′

(p)[x
′]. We have IR′(p)[x

′] =

Ie, thus pk ∈ Ie. Hence, pk ∈ Ie ∩ R′(p). Therefore, p ∈
√
Ie ∩R′(p) implying

(p)R
′

(p) ⊆
√
Ie ∩R′(p). Now, we need to show IR′[x′] ∩ R′ ⊆ (p)R′ since this will

imply IR′(p)[x
′] ∩R′(p) ⊆ (p)R′(p).

Let P be a non zero-dimensional associated prime of I ∩ R′. (Note that I ∩ R′ is

not zero-dimensional, thus such a P exists). Hence, I ∩ R′ =
⋂r
i=1Qi where Qi

are primary, which implies
√
I ∩R′ =

⋂r
i=1

√
Qi. Let, without loss of generality,

√
Q1 = P where P is not zero-dimensional. Thus, (p)R′ ⊆ P since (as we have

shown above) (p)R′ ⊆
√
I ∩R′ ⊂ P (as

⋂r
i=1

√
Qi ⊆ P ).

(p)R′ is one dimensional inR′ sinceR′/((p)R′) is a PID which is not a field as shown

above, hence has Krull dimension 1. We have dimP ≥ 1 and dim(p)R′ = 1. Also,

P ⊇ (p)R′ implies dimP ≤ dim(p)R′ = 1. Therefore, dimP = 1. We have

(p)R′ ⊆ P and both are one dimensional and prime, hence P = (p)R′. Furthermore,

I ∩R′ ⊆ (p)R′ since I ∩R′ ⊆
√
I ∩R′ ⊆ P = (p)R′.

This shows I ∩R′ = IR′[x′] ∩R′ ⊆ (p)R′ which implies IR′(p)[x
′] ∩R′(p) ⊆ (p)R′(p)

which then implies
√
IR′(p)[x

′] ∩R′(p) ⊆
√

(p)R′(p) = (p)R′(p) since (p)R′(p) is max-

imal. Thus,
√
Ie ∩R′(p) = (p)R′(p) since we have shown (p)R′(p) ⊆

√
Ie ∩R′(p)

before. Therefore, Ie ∩ R′(p) is (p)R′(p)-primary (since (p)R′(p) is maximal). This

completes the proof of the claim.

Let us collect all these four claims towards a proof. If I is zero-dimensional, we

apply the ZPD algorithm introduced before. Otherwise, we find r′ ∈ R′ − (p)R′

such that I = (I, r′) ∩ Iec and we need to decompose (I, r′) and Iec separately.

By Claim 1, (I, r′) ∩ R′ is zero-dimensional or the unit ideal in R′. If (I, r′) ∩ R′

is zero-dimensional, then we can compute the primary decomposition of (I, r′) by

induction on the number of xk’s where the contraction of the ideal to R[xk] is not

zero-dimensional. Else if (I, r′)∩R′ is the unit ideal, then I = Iec and we decompose

Iec only.

To decompose Iec, we need to decompose Ie = IR′(p)[x
′] and then contract the de-

composition back to R′[x′] by Proposition 3.2.11. By Claim 2, R′(p) is a PID and
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by Claim 3, (p)R′(p) is the unique maximal ideal of R′(p). By Claim 4, Ie ∩ R′(p) is

(p)R′(p)-primary. Thus, Ie ⊆ R′(p)[x
′] satisfies the conditions of Proposition 4.4.3.

Then, we can apply the algorithm to Ie in R′(p)[x
′] which has n− 1 variables and we

can obtain the primary decomposition of Ie by induction on n, where n is the number

of variables in the polynomial ring. Note that for the base step of induction, if n = 0

then I ⊆ R is an ideal in PID R such that I ∩ R = I is (p)-primary in R, so I is

already primary.

Note that, in the proof we used two induction arguments. In each recursive iteration

of the algorithm, either the number of the variables in the polynomial ring drops

by 1 or the number of variables xk such that the contraction of the ideal to R[xk]

is not zero-dimensional drops by 1. If the number of variables becomes zero, the

algorithm terminates as explained in the above paragraph and if there is no variable

xk such that the contraction of the ideal to R[xk] is not zero-dimensional, then the

ideal is itself zero-dimensional, hence we terminate the algorithm by applying the

ZPD algorithm.

Corollary 4.4.4 (Corollary 8.4 in [13]). If K is a field, then it is possible to compute

the primary decomposition of any proper ideal in K[x].

Proof. First of all, if K is a field, then K is a PID. I ∩K 6= (1) since I is a proper

ideal ofK[x]. Hence, I∩K = (0) since the only proper ideal of a field is (0). Then by

taking p = 0 and R = K in Proposition 4.4.3 we can obtain a primary decomposition

of I . (Note that (0) is a maximal ideal in K and I ∩ K =
√
I ∩K = (0) implies

I ∩K is (0)-primary).

Following the arguments in the proof of Proposition 4.4.3, we obtain the following al-

gorithm for computing the primary decomposition of ideals satisfying the conditions

of Proposition 4.4.3.

Algorithm 4.4.5. PPD-0 (R;x; I; p) : Primary Decomposition Over a PID - Primary

Contraction Case

Input: Ring R; variables x = x1, . . . , xn; ideal I ⊂ R[x]; p ∈ R

Assumptions: R is a PID, (p)R is maximal, I ∩R is (p)-primary.
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Output: {Q1, . . . , Qm} such that Qi ⊂ R[x] is primary and I =
⋂
Qi.

Step 1: If I is zero-dimensional (which can be checked by Proposition 4.2.8) return

its decomposition using ZPD (which was developed in Proposition 4.3.1).

Step 2: Else if I is not zero-dimensional, find i such that I ∩ R[xi] is not zero-

dimensional (such an i can be found by Corollary 4.2.7).

Step 3: Let R′ = R[xi], x′ = x1, . . . , xi−1, xi+1, . . . , xn, Ie = IR′(p)[x
′].

Step 4: Find r′ ∈ R′ − (p)R′ such that I = (I, r′) ∩ (Ie ∩ R′[x′]) (such an r′ exists

by Proposition 4.4.2).

Step 5: Let {Q1, . . . , Qm} = PPD-0 (R′(p);x
′; Ie; p). (As in the proof of Proposition

4.4.3, Ie and (p)R′(p) satisfy the assumptions of the algorithm. This step is a recursive

iteration of the algorithm where the number of variables is reduced by 1).

Step 6: Let Qc
i = Qi ∩ R′[x′]. (If Qi = (h1, h2, . . . , hs)R

′
(p)[x

′] where hj ∈ R′(p)[x′],
then after equating the denominators of the coefficients of hj we can write hj = fj/tj

where fj ∈ R′[x′] and tj ∈ R′ − (p)R′. Since tj is a unit in R′(p) we have Qi =

(f1, f2, . . . , fs)R
′
(p)[x

′] = IiR
′
(p)[x

′] where Ii = (f1, f2, . . . , fs) as an ideal in R′[x′].

Hence, Qc
i = IiR

′
(p)[x

′] ∩ R′[x′] which can be computed by Proposition 3.2.11. Then

as in proof of Proposition 4.4.3, {Qc
1, Q

c
2, . . . , Q

c
m} is a primary decomposition of

Iec).

Step 7: If (I, r′) = (1) then return {Qc
1, . . . , Q

c
m}. (By ideal membership algorithm

we can check whether (I, r′) = (1) or not. In this case, I = Iec, hence a primary

decomposition of Iec gives a primary decomposition of I).

Step 8: If (I, r′) 6= (1), then let {Q′1, . . . , Q′m} = PPD-0 (R;x; (I, r′); p). (Note

that as in the proof of Proposition 4.4.3, if (I, r′) 6= (1), the conditions of the al-

gorithm hold for the ideal (I, r′) in R[x]. While I ∩ R[xi] is not zero-dimensional,

(I, r′) ∩ R[xi] is zero-dimensional as in the proof of Proposition 4.4.3. In the recur-

sive iteration of the algorithm in this step, the number of variables xj such that the

contraction of the ideal to R[xj] is not zero-dimensional is reduced at least by 1).

Step 9: Return {Qc
1, . . . , Q

c
m, Q

′
1, . . . , Q

′

k}where {Qc
1, . . . , Q

c
m} is the decomposition
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of Iec and {Q′1, . . . , Q
′

k} is the decomposition of (I, r′) in the case (I, r′) 6= (1).

Proposition 4.4.6 (Proposition 8.5 in [13]). LetR be a PID and I be an ideal inR[x].

Then it is possible to compute a primary decomposition for I .

Proof. We have two cases.

Case 1: I ∩R is not zero-dimensional, i.e., I ∩R = (0) and R is not a field (since in

a PID which is not a field, the dimension of an ideal can only be 0 or 1. (0) is the only

ideal of dimension 1 and zero-dimensional prime ideals are given by (p) where p is a

prime in the PID). Then by Proposition 4.4.2, for the prime ideal (0) ⊂ R we can find

r 6= 0, r ∈ R such that I = (I, r) ∩ (IR(0)[x] ∩ R[x]) where IR(0)[x] ∩ R[x] = Iec.

Since R(0) is the quotient field of R, IR(0)[x] can be decomposed by Corollary 4.4.4

by the algorithm PPD-0 developed in Proposition 4.4.3. Then we can contract the

decomposition to R[x] by Proposition 3.2.11. Afterwards, we need to decompose

(I, r). We have (I, r)∩R = (r′) for some r′ ∈ R such that r′ | r (since r ∈ (I, r)∩R).

Here, r′ 6= 0 since r 6= 0. If r′ is a unit in R, then (I, r) = R[x], thus we do not need

to decompose it. If r′ is not a unit, then (I, r) ∩ R is zero-dimensional and how to

decompose (I, r) is explained in Case 2.

Case 2: I ∩R is zero-dimensional. Let I ∩R = (r′) = (
∏
pαi
i ) where r′ =

∏
pαi
i is

the factorization of r′ into irreducibles in R and each (pi)R is a maximal ideal in R.

We need a claim.

Claim 1: (pαi
i , I) ∩R is (pi)-primary in R.

Proof of Claim 1: We need to show that
√

(pαi
i , I) ∩R = (pi) (since (pi) is max-

imal, this will imply (pαi
i , I) ∩ R is (pi)-primary). We have pαi

i ∈ (pαi
i , I), there-

fore (pi) ⊆
√

(pαi
i , I) ∩R. To show that (pi) ⊇

√
(pαi
i , I) ∩R, it suffices to show

(pi) ⊇ (pαi
i , I) ∩R since

√
(pi) = (pi) (because (pi) is a prime ideal). Let m =

pαi
i h(x1, . . . , xn) + k(x1, . . . , xn) ∈ (pαi

i , I) ∩ R. Here, h(x1, . . . , xn) ∈ R[x] and

k(x1, . . . , xn) ∈ I . Thus, k(x1, . . . , xn) = pαi
i q(x1, . . . , xn) + k0 where k0 ∈ R,

pαi
i q(x1, . . . , xn) consists of the non-constant terms of k(x1, . . . , xn), and k0 is the

constant term of k(x1, . . . , xn). If we multiply both sides of the above equation by
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pα1
1 · · · p

αi−1

i−1 p
αi+1

i+1 · · · pαs
s , then we get

pα1
1 · · · p

αi−1

i−1 p
αi+1

i+1 · · · pαs
s k = (

s∏
i=1

pαi
i )q + pα1

1 · · · p
αi−1

i−1 p
αi+1

i+1 · · · pαs
s k0

which is an element of I since k ∈ I . Thus, we can conclude

pα1
1 · · · p

αi−1

i−1 p
αi+1

i+1 · · · pαs
s k0 ∈ I ∩ R since

∏s
i=1 p

αi
i ∈ I . Therefore, pαi

i | k0 since

I ∩ R = (
∏s

i=1 p
αi
i ). Hence, pi | k0. Thus, m = pαi

i h(x1, . . . , xn) + k(x1, . . . , xn) ∈
(pi) which shows (pαi

i , I) ∩ R ⊂ (pi). Therefore, (pαi
i , I) ∩ R is (pi)-primary in R

which proves the claim.

Now, (pαi
i , I) can be decomposed by the algorithm PPD-0 developed in Proposition

4.4.3 (Note that the conditions of Proposition 4.4.3 hold since (pαi
i , I) ∩ R is (pi)

-primary and (pi) is maximal in R). Here, we need another claim:

Claim 2: I =
⋂s
i=1(pαi

i , I).

Proof of Claim 2: Let p =
∏
pαi
i and qi = p/pαi

i . Then we get (q1, q2, . . . , qs)R = R

since in the PID R, we have gcd(q1, . . . , qs) = 1. Then r1q1 + r2q2 + · · · + rsqs = 1

for some ri ∈ R. Let y ∈
⋂

(pαi
i , I), then for each i, we can write y = pαi

i hi + ki

where hi ∈ R[x] and ki ∈ I . Since qipαi
i =

∏
pαi
i ∈ I we get qiy ∈ I for all i.

Thus, y = 1 · y = (r1q1 + r2q2 + · · · + rsqs) · y =
∑
ri(qiy) ∈ I . This shows⋂s

i=1(pαi
i , I) ⊂ I . The reverse inclusion is obvious, hence we get the equality which

proves the claim.

Now, since I =
⋂s
i=1(pαi

i , I) and we can find primary decompositions of (pαi
i , I)

as stated above, we can obtain a primary decomposition of I . Note that the above

decomposition is not necessarily irredundant.

Algorithm 4.4.7. PPD (R; x; I) : Primary Decomposition Over a PID

Input: Ring R; variables x = x1, . . . , xn; ideal I ⊂ R[x].

Assumptions: R is a PID.

Output: {Q1, . . . , Qm} such that Qi ⊂ R[x] is primary and I =
⋂
iQi.
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Step 0: If I ∩ R is zero-dimensional (i.e., if I ∩ R 6= (0), skip to Step 4 replacing

(I, r) in Step 4 by I and {Qc
1, . . . , Q

c
k} by ∅.)

Step 1: If I∩R is not zero-dimensional (i.e., if I∩R = (0)), then find an r 6= 0, r ∈ R
such that I = (I, r) ∩ (IR(0)[x] ∩ R[x]) (we can find such an r ∈ R by Proposition

4.4.2).

Step 2: Let {Q1, . . . , Qk} = PPD-0 (R(0);x; IR(0)[x]; 0). (Here, we find the decom-

position of Ie = IR(0)[x] as in the proof of Proposition 4.4.6).

Step 3: Let Qc
i = Qi ∩ R[x]. (Each Qc

i can be computed using Proposition 3.2.11 as

explained in Step 6 of Algorithm 4.4.5 above. Then {Qc
1, . . . , Q

c
k} gives a primary

decomposition of Iec ).

Step 4: Compute (I, r) ∩ R = (r′). (We can use Elimination Theory to compute a

basis of (I, r) ∩ R and since (I, r) ∩ R is a PID, we can reduce this basis to a single

element. Note that we should compute I ∩R = (r′) if I ∩R 6= (0) in Step 0).

Step 5: If r′ is a unit, then return {Qc
1, . . . , Q

c
m}. (Since then I = Iec).

Step 6: Else if r′ is not a unit in R, then factorize r′ =
∏
pmi
i where pi are irreducible

in R (note that by assumption, we can factorize elements of R).

Step 7: For all i, let {Qi
1, . . . , Q

i
ki
} =PPD-0 (R;x; (I, pmi

i ); pi). (Here, this gives the

decomposition of ((I, r), pmi
i ) = (I, pmi

i ) (the equality holds since pmi
i | r). Note that

in the case that I ∩R 6= (0) in Step 0, we already need to compute the decomposition

of (I, pmi
i )).

Step 8: Return {Qc
1, . . . , Q

c
k} ∪ (

⋃
i{Qi

1, . . . , Q
i
ki
}). (As in the proof of Proposition

4.4.6, if I ∩R = (0), which corresponds to Case 1 in the proof, we have I = (I, r)∩
Iec. {Qc

1, . . . , Q
c
k} is the list of primary components of Iec, {Qi

1, . . . , Q
i
ki
} is the list of

the primary components for ((I, r), pmi
i ) = (I, pmi

i ) as explained above, and (I, r) =⋂
i((I, r), p

mi
i ). Therefore, the union of these lists is a list of the primary components

of I . We get I = Iec ∩ (I, r) = Iec ∩ (
⋂
i((I, r), p

mi
i )) = (

⋂
iQ

c
i) ∩ (

⋂
i,j Q

i
j).

In the case where I∩R 6= (0), which corresponds to Case 2 in the proof of Proposition

4.4.6, we go from Step 0 to Step 4 and replace (I, r) by I . In this case, we have

I =
⋂
i(I, p

mi
i ) =

⋂
i,j Q

i
j . Here, {Qi

1, . . . , Q
i
ki
} is the list of the primary components
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of (I, pmi
i ) and we take {Qc

1, . . . , Q
c
k} = ∅ as noted in Step 0).

4.5 Algorithm for Computing the Associated Primes and Radical of an Ideal

In this section, we show that the algorithms introduced above also give the associ-

ated primes, hence, the radical of the ideal I to which the algorithms can be applied.

If I =
⋂
Qi is an irredundant primary decomposition of I and

√
Qi = Pi, then

√
I =

⋂
Pi, where Pi are the associated primes of I . Note that, the ZPD (Algorithm

4.3.2) returns an irredundant primary decomposition. The other algorithms PPD-0

(Algorithm 4.4.5) and PPD (Algorithm 4.4.7) return primary decompositions which

may or may not be irredundant. For any primary decomposition I =
⋂
Qi we can

obtain an irredundant primary decomposition of I by checking Qi ⊃
⋂
j 6=iQj using

Gröbner basis techniques and removing the redundant component. Therefore, to ob-

tain the associated primes and the radical of I , it suffices to know each
√
Qi for the

decompositions of I =
⋂
Qi returned by the algorithms we introduced.

Proposition 4.5.1. For each ideal I ⊂ R[x] where one of Algorithm 4.4.5 or Al-

gorithm 4.4.7 is applicable, it is possible to compute the associated primes and the

radical of I .

Proof. We need to show that we can compute
√
Qi for the decomposition I =

⋂
Qi

returned by any of the algorithms mentioned above. As stated in the remark after

Algorithm 4.3.2, this algorithm returns an irredundant decomposition I =
⋂
Qi and

explicitly computes
√
Qi. For Algorithm 4.4.7, as in the proof of Proposition 4.4.6,

the algorithm expresses I as I =
⋂
Ii such that Algorithm 4.4.5 can be applied to de-

compose each Ii, thus it suffices to show that the radicals of the primary components

are computable for the output of Algorithm 4.4.5.

In the Algorithm 4.4.5 let I ⊂ R[x1, . . . , xn] be such that there are k variables xi,

where I ∩ R[xi] is not zero-dimensional. If k = 0, then I is zero-dimensional and

we can apply Algorithm 4.3.2 to compute primary decomposition and the associated

primes. Also, if n = 0, then by assumption I = I ∩ R is (p)-primary, hence (p) ⊂
R is the unique associated prime of I . Thus, if k = 0 or n = 0 the associated

primes are computable by Algorithm 4.4.5. Proceeding by induction, assume that the
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associated primes of I are computable by Algorithm 4.4.5 when I ⊂ R[x1, . . . , xn]

and number of xi such that I ∩ R[xi] is not zero-dimensional is less than k, or when

I ⊂ R[x1, . . . , xn−1] (note that k = 0 or n = 0 is the base step of induction). For

the ideal I ∩ R[x1, . . . , xn] (n ≥ 1) with k > 1 variables xi such that I ∩ R[xi] is

not zero-dimensional, following the arguments in the proof of Proposition 4.4.3, the

algorithm first expresses I as I = (I, r′)∩ Iec. Here, (I, r′) ⊂ R[x1, . . . , xn] is either

the unit ideal or the algorithm can be applied to (I, r′) in which case there are less

than k variables xi such that (I, r′) ∩ R[xi] is not zero-dimensional. In the former

case, I = Iec, hence the decomposition of I is the decomposition of Iec which is

explained below. In the latter case, by the inductive hypothesis, the associated primes

of (I, r′) are computable (the number of variables did not change but k is dropped).

The algorithm decomposes Iec by decomposing Ie = IR′(p)[x
′] and then contracting it

to R′[x′] = (R[xi])[x
′] = R[x1, . . . , xn]. The algorithm can be applied to Ie which is

in a polynomial ring with n− 1 variables. Hence, by the inductive hypothesis, the al-

gorithm returns a primary decomposition Ie =
⋂
Q̃i, where

√
Q̃i = P̃i are explicitly

computed. Then the primary decomposition of Iec is Iec =
⋂
Q̃c
i =

⋂
(Q̃i ∩ R′[x′]).

Using the general property
√
J c = (

√
J)c for the contracted ideals, we obtain

√
Q̃c
i =

(

√
Q̃i)

c = P̃ c
i = P̃i ∩ R′[x′]. This is so, because P̃i are explicitly computed and we

can compute the contractions P̃i ∩ R′[x′] by Proposition 3.2.11 as explained in Step

6 of Algorithm 4.4.5. Therefore, the associated primes of Iec can be explicitly com-

puted. As a result, for I = (I, r′)∩Iec, the algorithm returns primary decompositions

of (I, r′) and Iec separately where the radical of each primary component is explicitly

computable. This completes the proof of Algorithm 4.4.5 by induction.
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CHAPTER 5

A SECOND APPROACH FOR COMPUTING PRIMARY DECOMPOSITION

5.1 Introduction

In this chapter, we give a summary of the methods and algorithms developed by

Eisenbud, Huneke, and Vasconcelos in the paper entitled as “Direct Methods for

Primary Decomposition” [4] for the computation of the equidimensional hull, the

radical, the associated primes, and the primary decomposition of an ideal I in a poly-

nomial ring S = k[x1, . . . , xn], where k is a field.

The algorithms by Gianni et al. in [13] for primary decomposition which we exam-

ined in the previous chapters include a PROJECTION process of intersecting an ideal

I in R[x1, . . . , xn] with R[x1, . . . , xn−1] (using elimination theory and Gröbner ba-

sis). This PROJECTION process decreases the number of variables and inductively

reduces the problem to one variable case eventually.

However, the methods developed by Eisenbud et al. [4] do not use such a PROJEC-

TION process and are called direct methods. These methods only use the FACTOR

and SYZYGY processes which are intrinsic in the problems related to primary de-

composition.

As stated by Eisenbul et al. in [4], avoiding the PROJECTION process is desirable

since the choice of the subring R[x1, . . . , xn−1] to which the ideal I is projected (con-

tracted) is generic and it does not take into consideration the symmetry or special

properties the generators of the ideal I may have, hence the use of PROJECTION

results in less efficient algorithms.

Besides, the use of FACTOR process (factorizing a polynomial into irreducible fac-
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tors) in the case of one variable polynomials in the problem of finding associated

primes of an ideal (the last section in this chapter), the algorithms we will examine

use computational techniques derived from computation of syzygies. Basically, for

a submodule of a free module over the polynomial ring S = k[x1, . . . , xn], Gröb-

ner basis of the submodule (with respect to a multiplicative order) can be computed

using standard algorithms, and the corresponding syzygy for the generators of the

given submodule is obtained as a result of these algorithms. (For r1, . . . , rm in

the module M over S = k[x1, . . . , xn], the syzygy submodule is {(a1, . . . , am) ∈
Sm | a1r1 + · · ·+ amrm = 0}).

Given that Gröbner bases and syzygies can be computed, the following can also be

computed, and the algorithms we will examine make use of these computations:

1) For a given module M over S (“M is given ” means, finitely many generators

of M as an S-module are specified with finitely many relations among them which

generate all S-linear dependence relations), a free resolution of M can be computed.

2) The codimension of an S-module M can be computed.

3) If I and J are ideals of S andM ⊂ N are submodules, then I∩J , (M : J) = {r ∈
N | jr ∈ M for all j ∈ J}, (M : N) = {j ∈ S | jN ⊂ M}, annM = (0 : M),

(M : J∞) =
⋃
n≥1(M : Jn) can be computed.

4) Given an S-module M and i ≥ 0, Exti(M,S) can be computed first by con-

structing a free resolution of M , and then dualizing this sequence and computing

Kernel/Image.

Using the algorithms of the above computations as tools, we now present the outline

of the algorithms for computing the equidimensional hull, the radical, the associated

primes and the primary decomposition of an ideal I of S = k[x1, . . . , xn]. Note that

the primary decomposition of an ideal is generalized to the primary decomposition

of a submodule in a module (see [5] pp.383), and some results and algorithms we

examine in this chapter are stated in this more general setting, although the aim is the

primary decomposition of ideals in S = k[x1, . . . , xn].

We will omit the proofs of the theorems (which are often technical results involving
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higher level homological algebra) and we focus on explaining the algorithms which

are consequences of these theorems.

5.2 Finding the Equidimensional Hull of a Submodule

Throughout, we assume that all modules are finitely generated. We define equidi-

mensional hull of 0 in a module M as the submodule N that consists of all elements

whose annihilators have dimension less than the dimension of M . Alternatively, N is

the intersection of all the primary components of 0 in M having maximal dimension.

As to the modules, if M ′ ⊂M is a submodule, equidimensional hull of M′ is defined

as the preimage in M of equidimensional hull of 0 in M/M ′.

If I is an ideal in ring S, then the equidimensional hull of I means the equidimen-

sional hull of I in S as a submodule of S. We write hull(N,M) or, if it is obvious

from the context, hull N for equidimensional hull.

The following theorem establishes a connection between hull and some other proper-

ties of primary decomposition and Ext.

Theorem 5.2.1 (Theorem 1.1. in [4]). Let M be a module over a regular domain S,

set Ie = ann ExteS(M,S) :

1) Ie has codimension≥ e andM/(0 :M Ie) has no associated primes of codimension

e. In particular, a prime ideal P ⊂ S of codimension e is associated to M if and only

if P contains Ie.

2) The equidimensional hull of 0 in M is the kernel of the natural map

π : M −→ ExtcS(ExtcS(M,S), S)

where c is the codimension of M .

3) If I = annSM , then hull(I) = Ic.

In particular, for any ideal I , hull(I) = annSExt
c
S(S/I, S).

We omit the proof of this theorem and concentrate on the applications of it. The proof

is given in [4].
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We can use Theorem 5.2.1 to compute equidimensional hull of an ideal, or to remove

the components of dimension less than a given number. We can state the result in

case of modules.

Algorithm 5.2.2 (Algorithm 1.2. in [4]). (Removing components of dimension less

than e) Let M be a module over S = k[x1, . . . , xn], let e be an integer (in general

bigger than or equal to dimM ). We find a submodule Ne which is the intersection of

the primary components of M that have dimension bigger than or equal to e.

Set f := dimS, set N := 0 ⊂M.

while f > e do

Compute Extf (M,S);

if codim(Extf (M,S)) = f then

If := annihilator(Extf (M,S));

N := (N :M If );

end if

Decrement f ;

(Optional : Set M := M/N);

end while

return N.

The following is a direct application of Theorem 5.2.1 to find the equidimensional

hull of an ideal.

Algorithm 5.2.3 (Algorithm 1.3. in [4]). (Equidimensional hull of an ideal) Given an

ideal I ⊂ S = k[x1, . . . , xn], we need to find the equidimensional hull of I which is

the intersection of the primary components of I having maximal dimension.

c:= codimI ;

return

ann ExtcS(S/I, S).

If we replace S/I by M in the algorithm, then we can compute the equidimensional

hull of the support of any module M . In fact, this algorithm is an application of third

part of the Theorem 5.2.1 above. Following is another application that is used to find

the equidimensional hull of 0 in a module.

Algorithm 5.2.4 (Algorithm 1.4. in [4]). (Equidimensional hull of 0 in a module)
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Let M be a finitely generated module over S = k[x1, . . . , xn]. We need to find the

equidimensional kernel N ⊂M .

c := codim M ;

π: M → ExtcS(ExtcS(M,S), S);

return N = kernelπ.

Here, π is the canonical map which can be computed in several different ways. One

way is to form the comparison map between the dual of a free resolution of M and

a free resolution of ExtcS(S/I, S). Another way is to construct a polynomial subring

of S, say T , where dimT = dim N such that N is finitely generated over T and T can

be constructed as a Noether normalization for S/annN . Afterwards, the kernel of the

natural map of N into its double dual over T can be taken.

We can find an ideal whose associated primes are equal to the associated primes of a

module which has a given codimension:

Algorithm 5.2.5 (Algorithm 1.5. in [4]). (Associated primes of given codimension)

Given a finitely generated moduleM over S = k[x1, . . . , xn], we want to find an ideal

whose associated primes are exactly the associated primes of M having codimension

e.

Ie := ann ExteS(M,S);

if codim Ie > e then

return S ;

else

return the equidimensional hull of Ie .

end if

Analysis of the Algorithm: This algorithm uses the second part of the first statement

of Theorem 5.2.1, that is, for a prime ideal P of codimension e in S, P is associated

to the module M if and only if P contains Ie.

Let P be an associated prime ofM having codimension e. Then, since codim(Ie) ≥ e

by Theorem 1.1., we analyze two cases: codim(Ie) > e and codim(Ie) = e.

For the case codim(Ie) > e (the first part of the algorithm), if Ie ⊆ P , where P is

a prime of codimension e, then by definition of codimension of ideals, codimIe ≤
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codimP . Therefore, e < codimIe ≤ codimP implying e < codimP which is a

contradiction. Therefore, there is no such prime ideal P in this case. Hence, M has

no associated primes of codimension e. To express this result, the algorithm returns

S (as an ideal of S, S has no primary decomposition, hence no associated primes.

The set of associated primes of S and the set of associated primes of M which have

codimension e are both empty).

For the case where codim(Ie) = e (the second part of the algorithm), let Ie ⊂ P

where P is a prime ideal of codimension e. Since codimIe = codimP = e by our

uppermost assumption on P and Ie ⊂ P , we can conclude P is a minimal prime

containing Ie. Since any prime ideal containing Ie contains a minimal prime ideal

associate to Ie (see [10] pg. 52), we obtain that P is an associated prime of Ie.

Therefore, the equidimensional hull of Ie is the desired ideal, since the associated

primes are the minimal primes containing Ie, and have the same codimension as Ie.

Equivalently, (as shown above), it consists of the primes P containing Ie which have

codimension e, hence the associated primes of M which have codimension e by part

1 of Theorem 5.2.1.

Note that we compute the equidimensional hull of Ie by Algorithm 5.2.3

5.3 The Radical of an Ideal

To find the radical of an ideal I in a polynomial ring S, we state two methods here.

Algorithm 5.3.1 (Algorithm 2.2. in [4]). (Radical of a generically complete intersec-

tion) Let J be an unmixed ideal of pure dimension c which is a generically complete

intersection where J = (f1, . . . , fm) ⊂ k[x1, . . . , xn].

Set Jn−c := the ideal of c× c minors of the Jacobian matrix

∂(z1, . . . , zd, f1, . . . , fm)/∂(x1, . . . , xn) where z1, . . . zd are general linear forms.

return radJ := (J : Jn−c).

Proposition 5.3.2 (Proposition 2.3. in [4]). Let J ⊂ I ⊂ S = k[x1, . . . , xn] be ideals

of the same dimension, let J be equidimensional with radical J ′.

74



In this case, equidimensional hull of the radical of I is given by the following formula:

equidimensional rad(I) = (J ′ : (J ′ : I)).

Proof. For this proof, we use the last statement of Lemma 5.3.3 below. Let J ′ =
⋂
Pi

where Pi are all prime ideals containing J , by definition of radical ideal. In fact, this is

equal to the intersection of minimal prime ideals of J . So, let J ′ = P1∩· · ·∩Pt where

Pi are minimal primes of J , 1 ≤ i ≤ t. Since J is equidimensional, dimPi = dimJ ,

for all i, where 1 ≤ i ≤ t. By assumption, dimJ = dimI , so let dimPi = dimJ =

dimI = d. By Lemma 5.3.3.c, (J ′ : I) =
⋂
Qi, where Qi are prime ideals such that

J ′ ⊂ Qi, and I 6⊂ Qi. Let P1, . . . , Ps, s ≤ t be the prime ideals among P1, . . . , Pt

such that J ′ ⊂ Pi and I 6⊂ Pi and let Ps+1, . . . , Pt be the ones such that I ⊂ Pj for

(s + 1) ≤ j ≤ t. P1, . . . , Ps are among the above mentioned ideals Qj’s. Since Qj

is a prime ideal containing J ′, there exists prime ideals Pij such that Pij ⊂ Qj for

some ij , where 1 ≤ ij ≤ t. This is because Pi’s are minimal primes of J (or J ′).

In fact, 1 ≤ ij ≤ s , since these Pij cannot contain I . Otherwise, I ⊂ Pij ⊂ Qj

implies I ⊂ Qj which contradicts the result obtained above by using Lemma 5.3.3.c.

Thus, (J ′ : I) =
⋂
Qj = P1 ∩ · · · ∩ Ps since each Qj contains a minimal prime

Pi (see [10], pg.52) . Let K = (J ′ : I). Hence, K = P1 ∩ · · · ∩ Ps by above.

Then, (J ′ : K) =
⋂
Q̃j where Q̃j are prime ideals such that J ′ ⊂ Q̃j and K 6⊂ Q̃j

by Lemma 5.3.3.c. So, there exists prime ideals Pij such that Pij ⊂ Q̃j for some ij ,

where (s+1) ≤ ij ≤ t. Here,K 6⊂ Pij ; otherwise,K ⊂ Pij ⊂ Q̃j but this contradicts

the above result obtained by Lemma 5.3.3.c. We obtain, (J ′ : K) =
⋂
Q̃i =

⋂
Pi

such that K 6⊂ Pi. We know that P1, . . . , Ps all contain K. If (P1 ∩ · · · ∩ Ps) ⊂ Pi

for some 1 ≤ i ≤ t, then Pj ⊂ Pi for some 1 ≤ j ≤ s. This is because if a

prime ideal contains an intersection of prime ideals, then one of the primes in the

intersection is contained in the prime ideal that contains the intersection. Since J

is equidimensional, dimPi = dimPj , therefore, Pi = Pj . Thus, (J ′ : (J ′ : I)) =⋂
Q̃j = Ps+1 ∩ · · · ∩ Pt, where Ps+1, . . . , Pt are the minimal primes of J containing

I and they all have dimension d. In fact, it is the intersection of the minimal primes

of I having dimension d. We have dimPs+1 = · · · = dimPt = d = dimI = dimJ .

Now, (equidimensional radical of I) =
⋂
P̃i, where P̃i is a minimal prime of I such

that dimP̃i = d. Since J ⊂ I and dimI = dimJ , each P̃i is also a minimal prime of
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J . Therefore, {Ps+1, . . . , Pt} = {P̃i} which means that (equidimensional radical of

I) = (J ′ : (J ′ : I)).

For completeness, we include the following technical lemma which plays an impor-

tant role in the proof of the above proposition.

Lemma 5.3.3 (Lemma 2.4.c in [4]). For ideals I and J in a Noetherian ring R, if I

is radical, then (I : J) is radical and

(I : J) =
⋂

Pi

where Pi ranges over all prime ideals containing I , but not containing J .

Algorithm 5.3.4 (Algorithm 2.5. in [4]). (Reduction of equidimensional radical to

complete intersection case) Given ideals J ⊂ I ⊂ k[x1, . . . , xn], where J is a com-

plete intersection, and I and J have the same codimension, we compute the equidi-

mensional hull of the radical of I as follows:

Compute

J ′ := radJ by Algorithm 5.3.1;

return

equidimensional radical I := (J ′ : (J ′ : I)).

This is an implementation of Proposition 5.3.2 above.

The following theorem, which is proved in [4], plays the central role in the second

method for computing the radical of an ideal that we will present in this section.

Theorem 5.3.5 (Theorem 2.7. in [4]). Let S be a polynomial ring over a perfect field

k, let I ⊂ S be an ideal whose dimension is d. If the characteristic of k is nonzero,

suppose that the nilradical of S/I is generated by elements whose index of nilpotency

is less than the characteristic of k. If for some integer a ≥ d we have

dimJa+1(I) < d

then

I1 := (I : Ja(I))

has the same equidimensional radical as I . Moreover, if a = d then I1 is radical in

dimension d, i.e. the primary components of I1 having dimension d are prime.
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Remark: Here, if I is generated by the sequence of relations f = f1, . . . , fr then

J (f) stands for the Jacobian matrix of this sequence, i.e. it is the n × r matrix

having the partial derivative ∂fj
∂xi

as the term in the ith row and jth column. On the

other hand, Ja(f) is the ideal generated by (n− a)× (n− a) minors of J (f) and

we have Ja(I) = Ja(f) + I .

The following algorithm is an application of this theorem for finding the radical of an

equidimensional ideal.

Algorithm 5.3.6 (Algorithm 2.9 in [4]). (Equidimensional Radical) Let I ⊂ S =

k[x1, . . . , xn] be an equidimensional ideal. We find the equidimensional radical U of

I which is equal to the intersection of all primes containing I whose dimensions are

the same as the dimension of I .

a := n− 1

d := dimI

while a > d do

while dimJa(I) = d do

I := (I : Ja(I));

end while

decrement a;

end while

I := (I : Jd(I));

return I.

Analysis of the Algorithm: First of all, I ⊂ J0(I) ⊂ J1(I) ⊂ · · · ⊂ Jn−1(I) ⊂
Jn(I) = S and d = dim(I) ≥ dimJ0(I) ≥ · · · ≥ dimJn−1(I) ≥ dimJn(I) =

dim(S) = −1 (by convention) imply that there exists a largest value of a such that

dimJa+1(I) < d (hence dimJa(I) = d). The second while loop in the algorithm

starts from this largest value of a ( a ≤ n − 1). Since the ring is Noetherian, every

ascending ideal chain stabilizes after finitely many steps. Let I = I0 ⊂ I1 ⊂ · · · ⊂
It = It+1 be the ideal chain in S, defined by I = I0 and Ii+1 = (Ii : Ja(Ii)) for

i ≥ 0, 0 ≤ i ≤ t. Then we have It = (It : Ja(It)) since the chain is stabilized

at It (It = It+1). I = I0 ⊂ I1 ⊂ · · · ⊂ It and dimJa+1(I) < d imply d >

dimJa+1(I) ≥ dimJa+1(I1) ≥ · · · ≥ dimJa+1(It), that is dimJa+1(Ii) < d
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for all i (Note that, Ik ⊂ Ik+1 implies Ja+1(Ik) ⊂Ja+1(Ik+1) since we can extend

a set of generators of Ik to a set of generators of Ik+1, hence the Jacobian matrix

for Ja+1(Ik) is a submatrix of the Jacobian matrix of Ja+1(Ik+1). Note also that,

Ja+1(Ik) is independent of the choice of generators for Ik. Ja+1(Ik) ⊂Ja+1(Ik+1)

implies dimJa+1(Ik) ≥ dimJa+1(Ik+1)).

Note that, throughout this while loop, the ideal I is modified by assigning the new

value of I as (I : Ja(I)) for some value of a where I satisfies the conditions of

Theorem 5.3.5 above. Under these conditions, I and (I : Ja(I)) have the same

equidimensional radical due to Theorem 5.3.5 above. Hence, dim(I) = dim(I :

Ja(I)). As a result, dimIi = d for all i, where 0 ≤ i ≤ t, and the equidimensional

radicals of Ii are the same for all i. If we can show that dimJa(It) < d then the

while loop terminates at It, and we can decrement a.

Since It ⊂ Ja(It) by definition of Ja(It), we have dimJa(It) ≤ dimIt = d. To

prove dimJa(It) < d, assume dimJa(It) = dimIt = d. Thus, there exist prime

ideals P0, . . . , Pd such that:

It ⊂Ja(It) ⊂ P0 ⊂ · · · ⊂ Pd

Since the dimension of Ja(It) and It are assumed to be equal, P0 is a minimal prime

of It. Therefore, P0 is an associated prime of It, too (see [10] pg.52). Hence, P0 =

(It : q) for some q ∈ S − It. (If q were in It then (It : q) would be S which is

not possible, since P0 is a prime ideal of S). Therefore, Ja(It) ⊂ P0 = (It : q).

This means, for every x ∈ P0, qx ∈ It. Hence, for every x ∈ Ja(It), qx ∈ It.

So, q ∈ (It : Ja(It)) = It which is a contradiction since q ∈ S − It. Therefore,

dimJa(It) < dimIt = d. As a result, in the sequence I ⊂ I1 ⊂ · · · ⊂ It = It+1

there exists i ≤ t such that dimJa(Ii) < d. This proves that the second while loop

terminates at Ii for the smallest such i. Indeed, i = t by the defining condition of the

while loop (Ii+1 exists if dimJa(Ii) = d).

If we write Ja(It) = Ja+1−1(It), then we can apply Theorem 5.3.5 above by sub-

stituting I = It and taking a − 1 in place of a, indeed we keep decrementing a

until we get dimJa(It) = d (here, dimJa+1(It) < d). For this decremented value

of a, we start the second loop again which gives the sequence of ideals I0 = It,

Ik+1 = (Ik : Ja(Ik)) for k ≥ 0. This while loop terminates as explained above.
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By the same argument, we keep decrementing a until a becomes d + 1. Suppose the

ideal that the algorithm gives at the end of the first while loop where a = d+ 1 is J ,

then we have dimJd+1(J) < d, hence by Theorem 5.3.5 above and by taking a = d

we obtain the ideal J1 = (J : Jd(J)) that is, an ideal which is radical in dimension

d, and J and J1 have the same equidimensional radical. Note that throughout the

algorithm, the equidimensional radical of the ideals do not change by Theorem 5.3.5

above. Hence, the equidimensional radical of I is equal to the equidimensional radical

of J1 which equals to the equidimensional hull of J1 since J1 is radical in dimension

d, where d = dimI = dimJ1. Since the ideal I we started with is equidimensional,

J1 is also equidimensional, hence rad(I) = equidimensional rad(I) = equidimensional

hull of J1 = J1.

Remark: If we apply the above algorithm to an ideal I which is not necessarily

equidimensional, then the equidimensional radical of I is given by the equidimen-

sional hull of J1, where J1 is the ideal that the above algorithm returns.

Now it is possible to compute the following invariants of any given module:

Algorithm 5.3.7 (Algorithm 2.10. in [4]). (Finding the intersection of the primes

associated to M having codimension e)

Ie := annExteS(M,S).

if codimIe = e, then

return the radical of the equidimensional hull of Ie;

else

return S.

end if

Analysis of the Algorithm: By Algorithm 5.2.5, we find the ideal I whose associated

primes are the associated primes of M having codimension e.

The aim of Algorithm 5.3.7 is to find the intersection of these ideals. Since I is

equidimensional, we can use Algorithm 5.3.6 above. Furthermore, since all associ-

ated primes have equal dimension, by Algorithm 5.3.6, we find the equidimensional

radical of I . This gives us, by definition, the intersection of the associated primes of

M having codimension e, as desired.
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Computation of the Radical of an Ideal I: Using Algorithm 5.3.7, we can compute

the radical of an ideal I as follows:

For each e, where 0 ≤ e ≤ dimI = d, compute the intersection of the associated

primes of I having dimension e, say Ke. So, rad(I) =
⋂d
e=0Ke.

Algorithm 5.3.8 (Algorithm 2.11. in [4]). (Finding the intersection of the minimal

associated primes of M having dimension e)

Compute the ideals Je and Je+1, where Je is the intersection of

the associated primes of M having dimension ≥ e.

(That is, Je =
⋂
Ki , i ≥ e, where Ki is computed by Algorithm 5.3.7

and it is the intersection of the primes associated to M having dimension i).

return (rad(Je) : Je+1).

Analysis of the Algorithm: We first define Je as above. Je =
⋂
i≥eKi. Each Ki can

be computed by Algorithm 5.3.7 above. Hence, we can compute Je and Je+1. Note

that, Je and Je+1 are radical, since they are the intersections of prime ideals. Hence,

rad(Je) = Je and the algorithm returns (Je : Je+1). Now, Je is the intersection of the

associated primes of M which have dimension ≥ e. Hence, Je is radical. Similarly,

Je+1 can be found. Hence, by Lemma 5.3.3 above, (Je : Je+1) =
⋂
Pi where Je ⊂ Pi

and Je+1 6⊂ Pi.

Claim: (Je : Je+1) =
⋂
Pi, where Pi is a minimal prime containing Je and Je+1 6⊂ Pi.

Proof of Claim: Let Pi be a prime that is not minimal. Let Je =
⋂
Qk ⊂ Pi. Pi

contains a minimal prime containing Je, say P̃i. If Pi does not contain Je+1 then P̃i

does not contain Je+1. This proves the claim.

To prove that (Je : Je+1) equals the intersection of the minimal primes of dimension

e, we proceed as follows:

Let Je =
⋂
Qk. Since Je =

⋂
Qk ⊂ Pi implies Qki ⊂ Pi. (Here, Qk and Pi are

prime ideals). We get Qki = Pi, since Pi is a minimal prime containing Je. We have,

(Je : Je+1) =
⋂
Pi, where Pi is a minimal prime containing Je and not containing

Je+1. For such a Pi, Je ⊂ Pi. Pi is a minimal prime containing Je implies that

Pi = Qki for some ki, where Je =
⋂
Qk (Qk are associated primes). For such a Pi,

we have the following three cases:

80



Case 1: dimPi > e. This implies Je+1 ⊂ Pi which contradicts Je+1 6⊂ Pi. Je+1 =⋂
Qj where Qj are the associated primes of M having dimension ≥ e. dimPi > e

also implies Pi = Qj for some j as shown above. Thus, Je+1 ⊂ Pi, where dim(Pi) ≥
e+ 1.

Case 2: dimPi = e and Qki = Pi is not a minimal associated prime of M of dimen-

sion e. Then Qki contains a minimal prime of M , say Qti , where Qti is a minimal

prime of M . Here, dimQti > e, thus, Je+1 ⊂ Qti . Hence, Je+1 ⊂ Qti ⊂ Qki = Pi.

Again, we get a contradiction to Je+1 6⊂ Pi.

Case 3: dimPi = e and Pi is a minimal associated prime of M .

Claim:Je+1 6⊂ Qki = Pi.

Proof of Claim: Otherwise, if Je+1 =
⋂
Q̃k ⊂ Qki , where dimQ̃k ≥ e + 1, and

Q̃k are associated primes of M , then there exists Q̃mi
such that Q̃mi

⊂ Qki and

dimQ̃mi
≥ e+1 with Q̃mi

being an associated prime ofM . However, this contradicts

Qki being a minimal associated prime of M . This proves the claim.

As a result, (Je : Je+1) =
⋂
Pi, where Je ⊂ Pi and Je+1 6⊂ Pi and these Pi are the

minimal associated primes of M having dimension e.

Algorithm 5.3.9 (Algorithm 2.12. in [4]). (Finding the intersection of the embedded

primes of M having dimension e)

Let K1 be the ideal that is the intersection of associated primes of M

having dimension e which can be computed by Algorithm 5.3.7;

Let K2 be the ideal that is the intersection of minimal primes of M

having dimension e which can be computed by Algorithm 5.3.8;

return (K1 : K2).

Analysis of the Algorithm: Since K1 is radical, (K1 : K2) is equal to the intersection

of prime ideals containing K1 and not containing K2 by Lemma 5.3.3 above. To

compute K1 we can run the Algorithm 5.3.7 above for codimension n− e. Let K2 =

P1 ∩ · · · ∩ Ps and K1 = P1 ∩ · · · ∩ Ps ∩ · · · ∩ Pt. Hence, (K1 : K2) = (
⋂t
i=1 Pi :

K2) =
⋂t
i=1(Pi : K2). (Pi : K2) = S if 1 ≤ i ≤ s since K2 ⊂ Pi. (Pi : K2) = Pi if

s + 1 ≤ i ≤ t since K2 6⊂ Pi. (Otherwise, if K2 = P1 ∩ · · · ∩ Ps ⊂ Pi then Pj ⊂ Pi

for some 1 ≤ j ≤ s. Hence, Pj = Pi (they are prime ideals with the same dimension)
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which yields a contradiction, since i > s.) Therefore, (K1 : K2) = (
⋂t
i=1 Pi : K2) =

S ∩ · · · ∩ S ∩ Ps+1 ∩ · · · ∩ Pt, where Ps+1, . . . , Pt are the embedded primes of M .

5.4 Primary Decomposition

From now on, we will be able to find primary decompositions with the help of afore-

mentioned techniques and a technique for finding a maximal ideal containing a given

ideal.

The process of finding a primary decomposition for an ideal I consists of two parts:

First, we find the individual associated primes; then we find a primary component for

each associated prime found in the first part.

The second part of this process can be done with the above developed techniques and

the following claim.

Claim: A primary component for the ideal I with the associated prime P is of the

form:

Qm := Equidimensional hull(I + Pm)

for sufficiently large m.

Proof of Claim: The proof of this claim can be found in [11]. We show below that

Qm is P -primary. Let E(I) stand for the equidimensional hull of an ideal I . Let

(I +Pm) = Jm and let Jm = T1 ∩ · · · ∩Tk be an irredundant primary decomposition

of Jm. Also, letQm = E(Jm) = T1∩· · ·∩Ts, where Tj are the maximum dimensional

primary components of Jm for 1 ≤ j ≤ s. We have Pm ⊂ Jm and rad(Pm) = P , so

rad(Pm) = P ⊂ rad(Jm). On the other hand, I ⊂ P (since P is an associated prime

of I) and Pm ⊂ P implies I + Pm = Jm ⊂ P . Hence, rad(Jm) ⊂ rad(P ) = P

(since P is prime). Therefore, rad(Jm) = P . So, P =
⋂
rad(Ti) implies rad(Ti) =

P for some i (see [10], pg.8). Thus, rad(Ti) = P ( rad(Tj) for all i 6= j. Hence,

dim(rad(Tj)) < dim(rad(Ti)) for all i 6= j. Therefore, rad(Ti) is the unique associ-

ated prime of Jm which has the maximum dimension. As a result, E(Jm) = Qm = Ti

where Ti is primary and rad(Ti) = P . This proves that Qm is P -primary.

Here, Qm is uniquely defined if P is a minimal prime for I . Also, Qm is in any case
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a P -primary ideal. Bounds for the required m can be directly given, but for practical

purposes it is better to guess it and check the sufficiency by the following criterion:

Let Q be a P -primary ideal containing I . Then Q is a primary component for I if and

only if the natural map

(I[P ] : P∞)/I[P ] −→ S/Q

is a monomorphism [11]. An algorithm to compute I[P ] is developed in §3 at [4].

As to find the associated primes of I , we can suppose that S is a polynomial ring.

Since we can find the intersection of all the associated primes of a given dimension by

Algorithm 5.3.7 above, it suffices to find the individual components of an equidimen-

sional radical ideal I . If we know the associated prime ideals of the homogenization

of the ideal I , then we can obtain the associated prime ideals of I . Hence, we may

assume I is homogeneous. By correspondence, finding the prime components of I is

equivalent to finding the minimal primes of the ring R := S/I .

First, using the method of [16], (also see [7]), we can compute the integral closure R′

of R := S/I .

The minimal primes of R are the intersections of R with the minimal primes of R′.

Hence, it is enough to find the minimal primes of a reduced integrally closed graded

ring which is R′ here.

Any integrally closed ring is a finite product of integral domains (see [9], pp.64).

Hence, minimal primes of R′ are in one-to-one correspondence with the indecompos-

able idempotents of R′.

To illustrate this, if we let R′ = R1×· · ·×Rk, where Ri are integral domains, and let

I ⊂ R′ be an ideal, then I = I1× · · · × Ik, where Ii is an ideal of Ri. Obviously, I is

prime if and only if R′/I is an integral domain. Hence, R′/I = R1/I1×· · ·×Rk/Ik,

where Ri/Ii = (0)Ri
for all but one i, which means Ii = Ri. Therefore, if I is prime,

then I = R1 × · · · ×Ri−1 × Pi ×Ri+1 × · · · ×Rk, where Pi is a prime of Ri. Thus,

if I is minimal, then I = R1 × · · · ×Ri−1 × (0)Ri
×Ri+1 × · · · ×Rk, since integral

domains have only one minimal prime which is (0).

Hence, a minimal prime ideal I of R′ can be matched to an indecomposable idempo-
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tent element of R′ which is êi = (0R1 ×· · ·× 0Ri−1
× eRi

× 0Ri+1
×· · ·× 0Rk

), where

eRi
is the multiplicative identity of Ri. The correspondence is given by I = (0 : êi)

in R′.

Any idempotent has degree 0, since e2 = e and the ring R′ is graded. Hence, idem-

potents are elements of the finite dimensional k-algebra A := R′0, where R′0 is the

subgroup of R′ that consists of the elements having degree 0.

The minimal ideals of A (which is a product of fields since it is a reduced finite

dimensional k-algebra) are generated by indecomposable idempotents, i.e. the ones

which can not be written as a sum of any other idempotents. To find these minimal

ideals without using the idempotents, we need to find the intersection of all finitely

many maximal ideals of A except one. This is because the maximal ideals of A are

of the form:

F1 × · · · × Fi−1 × (0)Fi
× Fi+1 × · · · × Fk

where Fi are fields.

To compute the minimal primes of R′, let N be a minimal ideal of A, choose a

nonzero element s ∈ N . Thus,

P = (0 : s∞)

gives a minimal prime ideal of A.

Now, we state a method to find the maximal ideals of a finite dimensional k-algebra,

A = k[x1, . . . , xn]/I . There is a different approach to this problem which is men-

tioned in [8]. The method we mention here is probabilistic.

We can assume thatA is reduced, since we are able to compute radicals by algorithms

in the second section. Thus, A is a product of fields.

Let x ∈ A be any random element and let x 6∈ k. Determine whether x is a zero

divisor by computing Gröbner basis for (I : x). Note that x is a zero divisor in

k[x1, . . . , xn]/I if and only if (I : x) 6= I .

If x is a zero divisor, then let I := (I, x) and consider the following quotient A =

k[x1, . . . , xn]/(I, x). Note that, since x is a zero divisor in A = k[x1, . . . , xn]/I ,

84



(I, x) 6= k[x1, . . . , xn]. Hence, k[x1, . . . , xn]/(I, x) is a finite dimensional k-algebra

with a smaller dimension. We proceed by induction on dimkA. dimkA = 1 implies

A is a field, hence (0) is a maximal ideal in A (base step).

Else if x is not a zero divisor, then determine dimkA by computing a Gröbner basis

for the ideal defining A. Now, let r = r(x) be the smallest integer such that the

powers

1, x, x2, . . . , xr

are linearly dependent. If r(x) = dimkA, then the linear dependence relation can be

stated as q(x) = 0, where q(t) is a polynomial in one variable t. Hence, A ∼= k[t]/(q).

If q is a product of nonconstant polynomials as q = p1p2, then p1(x)p2(x) = 0.

Therefore, p1(x) is a zero divisor, and we return to the first case. However, if q is

irreducible, then A is a field and (0) is a maximal ideal.

Hence, provided that x is a zero divisor or r(x) = dimkA, we can proceed the algo-

rithm and reach the result by induction on dimkA. Otherwise, we choose x again and

execute the above method.
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